7,043 research outputs found
Tunneling magnetoresistance in diluted magnetic semiconductor tunnel junctions
Using the spin-polarized tunneling model and taking into account the basic
physics of ferromagnetic semiconductors, we study the temperature dependence of
the tunneling magnetoresistance (TMR) in the diluted magnetic semiconductor
(DMS) trilayer heterostructure system (Ga,Mn)As/AlAs/(Ga,Mn)As. The
experimentally observed TMR ratio is in reasonable agreement with our result
based on the typical material parameters. It is also shown that the TMR ratio
has a strong dependence on both the itinerant-carrier density and the magnetic
ion density in the DMS electrodes. This can provide a potential way to achieve
larger TMR ratio by optimally adjusting the material parameters.Comment: 5 pages (RevTex), 3 figures (eps), submitted to PR
Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light
Exploring an efficient and photostable heterostructured photocatalyst is a pivotal scientific topic for worldwide energy and environmental concerns. Herein, we reported that Pt decorated g-C3N4/Bi2MoO6 heterostructured composites with enhanced photocatalytic performance under visible light were simply synthesized by one-step hydrothermal method for methylene blue (MB) dye degradation. Results revealed that the synthetic Pt decorated g-C3N4/Bi2MoO6 composites with Bi2MoO6 contents of 20 wt.% (Pt@CN/20%BMO) presented the highest photocatalytic activity, exhibiting 7 and 18 times higher reactivity than the pure g-C3N4 and Bi2MoO6, respectively. Structural analyses showed that Bi2MoO6 microplates were anchored on the wrinkled flower-like g-C3N4 matrix with Pt decoration, leading to a large expansion of specific surface area from 10.79 m2/g for pure Bi2MoO6 to 46.09 m2/g for Pt@CN/20%BMO. In addition, the Pt@CN/20%BMO composites exhibited an improved absorption ability in the visible light region, presenting a promoted photocatalytic MB degradation. Quenching experiments were also conducted to provide solid evidences for the production of hydroxyl radicals (•OH), electrons (e−), holes (h+) and superoxide radicals (•O2−) during dye degradation. The findings in this critical work provide insights into the synthesis of heterostructured photocatalysts with the optimization of band gaps, light response and photocatalytic performance in wastewater remediation
Combined Control of Morphology and Polymorph in Spray Drying of Mannitol for Dry Powder Inhalation
The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation
Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition
Soyasaponins are triterpenoid saponins widely found in legume plants. These compounds have drawn considerable attention because they have various activities beneficial for human health, and their biosynthesis has been actively studied. In our previous study, we found that legume plants including soybean secrete soyasaponins from the roots in hydroponic culture throughout the growth period, but the physiological roles of soyasaponins in the rhizosphere and their fate in soil after exudation have remained unknown. This study demonstrates that soyasaponins are secreted from the roots of field-grown soybean, and soyasaponin Bb is the major soyasaponin detected in the rhizosphere. In vitro analysis of the distribution coefficient suggested that soyasaponin Bb can diffuse over longer distances in the soil in comparison with daidzein, which is a typical isoflavone secreted from soybean roots. The degradation rate of soyasaponin Bb in soil was slightly faster than that of daidzein, whereas no soyasaponin Bb degradation was observed in autoclaved soil, suggesting that microbes utilize soyasaponins in the rhizosphere. Bacterial community composition was clearly influenced by soyasaponin Bb, and potential plant growth-promoting rhizobacteria such as Novosphingobium were significantly enriched in both soyasaponin Bb-treated soil and the soybean rhizosphere. These results strongly suggest that soyasaponin Bb plays an important role in the enrichment of certain microbes in the soybean rhizosphere
Two lathyrane diterpenoid stereoisomers containing an unusual trans-gem-dimethylcyclopropane from the seeds of Euphorbia lathyris
Two novel lathyrane-type diterpenoids, the Euphorbia factors L(2a) (1) and L(2b) (2), and their stereoisomer Euphorbia factor L(2) (3) were obtained from seeds of Euphorbia lathyris. Both Euphorbia factors L(2a) and L(2b) possess an unprecedented trans-gem-dimethylcyclopropane as structural feature. Also, the Euphorbia factor L(2a) is the first example of a lathyrane diterpenoid with an endocyclic 12(Z)-double bond. The structures of the molecules and their absolute configurations were elucidated by comprehensive spectroscopic analyses, Cu-Kα radiation X-ray diffraction, and comparison with calculated electronic circular dichroism (ECD) data. The Euphorbia factor L(2b) exhibited an inhibitory effect against U937 cell line with an IC(50) value of 0.87 μM
On the Prevalence, Impact, and Evolution of SQL code smells in Data-Intensive Systems
ABSTRACT: Code smells indicate software design problems that harm software quality. Data-intensive systems that frequently access databases often suffer from SQL code smells besides the traditional smells. While there have been extensive studies on traditional code smells, recently, there has been a growing interest in SQL code smells. In this paper, we conduct an empirical study to investigate the prevalence and evolution of SQL code smells in open-source, data-intensive systems. We collected 150 projects and examined both traditional and SQL code smells in these projects. Our investigation delivers several important findings. First, SQL code smells are indeed prevalent in data-intensive software systems. Second, SQL code smells have a weak co-occurrence with traditional code smells. Third, SQL code smells have a weaker association with bugs than that of traditional code smells. Fourth, SQL code smells are more likely to be introduced at the beginning of the project lifetime and likely to be left in the code without a fix, compared to traditional code smells. Overall, our results show that SQL code smells are indeed prevalent and persistent in the studied data-intensive software systems. Developers should be aware of these smells and consider detecting and refactoring SQL code smells and traditional code smells separately, using dedicated tools
Recommended from our members
Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice
The Mott insulator is a central concept in strongly correlated physics and manifests when the repulsive Coulomb interaction between electrons dominates over their kinetic energy . Doping additional carriers into a Mott insulator can give rise to other correlated phenomena such as unusual magnetism and even high-temperature superconductivity . A tunable Mott insulator, where the competition between the Coulomb interaction and the kinetic energy can be varied in situ, can provide an invaluable model system for the study of Mott physics. Here we report the possible realization of such a tunable Mott insulator in a trilayer graphene heterostructure with a moiré superlattice. The combination of the cubic energy dispersion in ABC-stacked trilayer graphene and the narrow electronic minibands induced by the moiré potential leads to the observation of insulating states at the predicted band fillings for the Mott insulator. Moreover, the insulating states in the heterostructure can be tuned: the bandgap can be modulated by a vertical electrical field, and at the same time the electron doping can be modified by a gate to fill the band from one insulating state to another. This opens up exciting opportunities to explore strongly correlated phenomena in two-dimensional moiré superlattice heterostructures. 1,2 2,3 4–8 9–1
Measurement of proton electromagnetic form factors in in the energy region 2.00-3.08 GeV
The process of is studied at 22 center-of-mass
energy points () from 2.00 to 3.08 GeV, exploiting 688.5~pb of
data collected with the BESIII detector operating at the BEPCII collider. The
Born cross section~() of is
measured with the energy-scan technique and it is found to be consistent with
previously published data, but with much improved accuracy. In addition, the
electromagnetic form-factor ratio () and the value of the
effective (), electric () and magnetic () form
factors are measured by studying the helicity angle of the proton at 16
center-of-mass energy points. and are determined with
high accuracy, providing uncertainties comparable to data in the space-like
region, and is measured for the first time. We reach unprecedented
accuracy, and precision results in the time-like region provide information to
improve our understanding of the proton inner structure and to test theoretical
models which depend on non-perturbative Quantum Chromodynamics
Grain boundary effects on magnetotransport in bi-epitaxial films of LaSrMnO
The low field magnetotransport of LaSrMnO (LSMO) films
grown on SrTiO substrates has been investigated. A high qualtity LSMO film
exhibits anisotropic magnetoresistance (AMR) and a peak in the
magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films
prepared using a seed layer of MgO and a buffer layer of CeO display a
resistance dominated by grain boundaries. One film was prepared with seed and
buffer layers intact, while a second sample was prepared as a 2D square array
of grain boundaries. These films exhibit i) a low temperature tail in the low
field magnetoresistance; ii) a magnetoconductance with a constant high field
slope; and iii) a comparably large AMR effect. A model based on a two-step
tunneling process, including spin-flip tunneling, is discussed and shown to be
consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format
(zdf1.jpg); the eps was huge. Accepted to Phys. Rev.
- …