189 research outputs found
Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests
Background and aims Estimation of root-mediated carbon fluxes in forested peatlands is needed for understanding ecosystem functioning and supporting greenhouse gas inventories. Here, we aim to determine the optimal methodology for utilizing ingrowth cores in estimating annual fine-root production (FRP) and its vertical distribution in trees, shrubs and herbs. Methods We used 3-year data obtained with modified ingrowth core method and tested two calculation methods: 'ingrowth-dividing' and `ingrowth-subtracting'. Results The ingrowth-dividing method combined with a 2-year incubation of ingrowth cores can be used for the 'best estimate' of FRP. The FRP in the nutrient-rich fen forest (561 g m(-2)) was more than twice that in the nutrient-poor bog forest (244 g m(-2)). Most FRP occurred in the top 20-cm layer (76-82 %). Tree FRP accounted for 71 % of total FRP in the bog and 94 % in the fen forests, respectively, following the aboveground vegetation patterns; however, in fen forest the proportions of spruce and birch in FRP were higher than their proportions in stand basal area. Conclusions Our methodology may be used to study peatland FRP patterns more widely and will reduce the volume of labour-intensive work, but will benefit from verification with other methods, as is the case in all in situ FRP studies.Peer reviewe
Effects of soil warming and nitrogen foliar applications on bud burst of black spruce
Key message: In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site.
Abstract: The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions
Root turnover and productivity of coniferous forests
Fine roots and mycorrhizae have recently been shown to produce a major portion of the organic matter entering decomposition. Roots and mycorrhizae constitute 63 to 70% of total net primary production in Douglas-fir and Pacific silver fir stands. The importance of roots in primary production makes the method of root extraction from the soil important. Wet-sieving with small mesh screens is more effective than hand-sorting for fine roots and mycorrhizae. Screen size, the efficiency of recovery, the physiological status of the roots and coversion factors to derive biomass from the numbers of root tips should be stated. Published data is enhanced if the phenological status of the stand, its age, tree density, and soil texture are quoted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43475/1/11104_2005_Article_BF02182643.pd
Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization.
Abstract In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of resource limitations, might respond to environmental change. This study reports root length density and biomass development in young stands of eastern cottonwood (Populus deltoidies Bartr.) and American sycamore (Platanus occidentalis L.) that have narrow, high resource site requirements, and compares them with sweetgum (Liquidambar styraczj7ua L.) and loblolly pine (Pinus taeda L.), which have more robust site requirements. Fine roots (5 mm) were sampled to determine spatial distribu-tion in response to fertilizer and irrigation treatments delivered through drip irrigation tubes. Root length density and biomass were predominately controlled by stand development, depth and proximity to drip tubes. After accounting for this spatial and temporal variation, there was a significant increase in RLD with fertilization and irrigation for all genotypes. The response to fertilization was greater than that of irrigation. Both fine and coarse roots responded positively to resources delivered through the drip tube, indicating a wholeroot- system response to resource enrichment and not just a feeder root response. The plastic response to drip tube water and nutrient enrichment demonstmte the capability of root systems to respond to supply heterogeneity by increasing acquisition surface. Fineroot biomass, root density and specific root length were greater for broadleaved species than pine. Roots of all genotypes explored the rooting volume within 2 years, but this occurred faster and to higher root length densities in broadleaved species, indicating they had greater initial opportunity for resource acquisition than pine. Sweetgum's root characteristics and its response to resource availability were similar to the other broadleaved species, despite its hnctional resemblance to pine regarding robust site requirements. It was concluded that genotypes, irrigation arid fertilization significantly influenced tree root system development, which varied spatially in response to resource-supply heterogeneity created by dnp tubes. Knowledge of spatial and temporal patterns of root distribution in these stands will be used to interpret nutrient acquisition and soil respiration measurements
Effect of the root temperature on growth parameters of various European tree species
European forest tree species have been investigated regarding the reaction of growth of shoots, roots and leaves during an incubation of the root system at various temperatures ranging from 5 to 35 °C for 4 months. Species-specific differences in the reaction to root temperatures could be demonstrated. Growth optima (total dry mass increment) ranged from about 15 °C (Picea abies, Larix decidua, Pseudotsuga menziesii, Betula verrucosa) to 25 °C (Quercus robur, Carpinus betulus) and up to 30 °C (Pinus nigra). Chilling of the root system of Juglans regia down to 2 °C resulted in a rapid and long-lasting decrease of net photosynthetis, but only in a moderate decrease of stomatal conductance and transpiration. Respiration was stimulated after some days. The ecological consequences of different optima for root temperatures among various species are discussed regarding their natural distribution and their reactions to increasing temperatures caused by the greenhouse effect.Effets de la température racinaire sur la croissance de diverses espèces ligneuses européennes. Les effets d'une incubation du système racinaire à différentes températures (5 à 35 °C) pendant 4 mois, sur la croissance aérienne de plusieurs espèces ligneuses forestières européennes, ont été analysés. D'importantes différences interspécifiques ont été mises en évidence dans cette réponse. Les optima thermiques de croissance en biomasse totale allaient de 15 °C (Picea abies, Larix decidua, Pseudotsuga menziesii, Betula verrucosa) à 25 °C (Quercus robur, Carpinus betulus), voire 30 °C (Pinus nigra). Un refroidissement des racines de Juglans regia à 2 °C a résulté dans une diminution rapide et durable de l'assimilation nette de CO2, mais seulement d'une baisse limitée de conductance stomatique et de transpiration. La respiration était stimulée après quelques jours. Les conséquences écologiques de ces différences des optima thermiques sont discutées en regard de la distribution des espèces et de leurs réactions à des accroissements de température dus à l'effet de serre
- …