2,462 research outputs found

    The Impact of Strategic Trajectory Optimization on Illusory Target Biases During Goal-Directed Aiming

    Get PDF
    During rapid aiming, movements are planned and executed to avoid worst-case outcomes that require time and energy to correct. As such, downward movements initially undershoot the target to avoid corrections against gravity. Illusory target context can also impact aiming bias. Here, the authors sought to determine how strategic biases mediate illusory biases. Participants aimed to MĂĽller-Lyer figures in different directions (forward, backward, up, down). Downward biases emerged late in the movement and illusory biases emerged from peak velocity. The illusory effects were greater for downward movements at terminal endpoint. These results indicate that strategic biases interact with the limb-target control processes associated with illusory biases. Thus, multiple control processes during rapid aiming may combine and later affect endpoint accuracy (D. Elliott et al., 2010)

    The influence of intrapersonal sensorimotor experiences on the corticospinal responses during action-observation

    Get PDF
    The coupling of perception and action has been strongly indicated by evidence that the observation of an action primes a response in the observer. It has been proposed that these primed responses may be inhibited when the observer is able to more closely distinguish between self- and other-generated actions – the greater the distinction, then the greater the inhibition of the primed response. This self–other distinction is shown to be enhanced following a period of visual feedback of self-generated action. The present study was designed to examine how sensorimotor experiences pertaining to self-generated action affect primed responses from observed actions. Single-pulse transcranial magnetic stimulation was used to investigate corticospinal activity elicited during the observation of index- and little-finger actions before and after training (self-generated action). For sensorimotor training, participants executed finger movements with or without visual feedback of their own movement. Results showed that the increases in muscle-specific corticospinal activity elicited from action–observation persisted after training without visual feedback, but did not emerge following training with visual feedback. This inhibition in corticospinal activity during action–observation following training with vision could have resulted from the refining of internal models of self-generated action, which then led to a greater distinction between “self” and “other” actions

    Gunslinger Effect and Muller-Lyer Illusion: Examining Early Visual Information Processing for Late Limb-Target Control

    Get PDF
    The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and MĂĽller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control

    The influence of environmental context in interpersonal observation-execution.

    Get PDF
    Cyclical upper-limb movements involuntarily deviate from a primary movement direction when the actor concurrently observes incongruent biological motion. We examined whether environmental context influences such motor interference during interpersonal observation-execution. Participants executed continuous horizontal arm movements while observing congruent horizontal or incongruent curvilinear biological movements with or without the presence of an object positioned as an obstacle or distractor. When observing a curvilinear movement, an object located within the movement space became an obstacle, and thus, the curvilinear trajectory was essential to reach into horizontal space. When acting as a distractor, or with no object, the curvilinear trajectory was no longer essential. For observing horizontal movements, objects were located at the same relative locations as in the curvilinear movement condition. We found greater involuntary movement deviation when observing curvilinear compared to the horizontal movements. Also, there was an influence of context only when observing horizontal movements, with greater deviation exhibited in the presence of a large obstacle. These findings suggest the influence of environmental context is underpinned by the (mis-)matching of observed and executed actions as incongruent biological motion is primarily coded via bottom-up sensorimotor processes, whilst the congruent condition incorporates surrounding environmental features to modulate the bottom-up sensorimotor processes

    The violation of Fitts' Law: an examination of displacement biases and corrective submovements

    Get PDF
    Fitts’ Law holds that, to maintain accuracy, movement times of aiming movements must change as a result of varying degrees of movement difficulty. Recent evidence has emerged that aiming to a target located last in an array of placeholders results in a shorter movement time than would be expected by the Fitts’ equation—a violation of Fitts’ Law. It has been suggested that the violation emerges because the performer adopts an optimized movement strategy in which they partially pre-plan an action to the closest placeholder (undershoot the last placeholder) and rely on a secondary acceleration to propel the limb toward the last location when it is selected as the target (Glazebrook et al. in Hum Mov Sci 39:163–176, 2015). In the current study, we examine this proposal and further elucidate the processes underlying the violation by examining limb displacement and corrective submovements that occur when performers aim to different target locations. For our Main Study, participants executed discrete aiming movements in a five-placeholder array. We also reanalyzed data from a previously reported study in which participants aimed in placeholder and no-placeholder conditions (Blinch et al. in Exp Brain Res 223:505–515, 2012). The results showed the violation of Fitts’ Law unfolded following peak velocity (online control). Further, the analysis showed that movements to the last target tended to overshoot and had a higher proportion of secondary submovements featuring a reversal than other categories of submovement (secondary accelerations, discontinuities). These findings indicate that the violation of Fitts’ Law may, in fact, result from a strategic bias toward planning farther initial displacements of the limb which accommodates a shorter time in online control

    The modulation of motor contagion by intrapersonal sensorimotor experience

    Get PDF
    Sensorimotor experiences can modify the internal models for action. These modifications can govern the discrepancies between predicted and actual sensory consequences, such as distinguishing self- and other-generated actions. This distinction may also contribute toward the inhibition of movement interference, which is strongly associated with the coupling of observed and executed actions. Therefore, movement interference could be mediated by the sensorimotor experiences underlying the self-other distinction. The present study examined the impact of sensorimotor experiences on involuntary movement interference (motor contagion). Participants were required to complete a motor contagion paradigm in which they executed horizontal arm movements while observing congruent (horizontal) or incongruent (vertical) arm movements of a model. This task was completed before and after a training protocol in which participants executed the same horizontal arm movements in the absence of the model stimuli. Different groups of participants trained with or without vision of their moving limb. Analysis of participants who were predisposed to motor contagion (involuntary movement interference during the observation of incongruent movements) revealed that the no vision group continued to demonstrate contagion at post-training, although the vision group did not. We propose that the vision group were able to integrate the visual afferent information with an internal model for action, which effectively refines the ability to match self-produced afferent and efferent sources of information during response-execution. This enhanced matching allows for a better distinction between self and other, which in turn, mediates the inhibition of motor contagion

    The Multiple Process Model of Goal-Directed Reaching Revisited

    Get PDF
    Recently our group forwarded a model of speed-accuracy relations in goal-directed reaching. A fundamental feature of our multiple process model was the distinction between two types of online regulation: impulse control and limb-target control. Impulse control begins during the initial stages of the movement trajectory and involves a comparison of actual limb velocity and direction to an internal representation of expectations about the limb trajectory. Limb-target control involves discrete error-reduction based on the relative positions of the limb and the target late in the movement. Our model also considers the role of eye movements, practice, energy optimization and strategic behavior in limb control. Here, we review recent work conducted to test specific aspects of our model. As well, we consider research not fully incorporated into our earlier contribution. We conclude that a slightly modified and expanded version of our model, that includes crosstalk between the two forms of online regulation, does an excellent job of explaining speed, accuracy, and energy optimization in goal-directed reaching

    Testing for Network and Spatial Autocorrelation

    Full text link
    Testing for dependence has been a well-established component of spatial statistical analyses for decades. In particular, several popular test statistics have desirable properties for testing for the presence of spatial autocorrelation in continuous variables. In this paper we propose two contributions to the literature on tests for autocorrelation. First, we propose a new test for autocorrelation in categorical variables. While some methods currently exist for assessing spatial autocorrelation in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single omnibus test. Second, we discuss the importance of testing for autocorrelation in data sampled from the nodes of a network, motivated by social network applications. We demonstrate that our proposed statistic for categorical variables can both be used in the spatial and network setting

    Understanding Urban Demand for Wild Meat in Vietnam: Implications for Conservation Actions

    Get PDF
    Vietnam is a significant consumer of wildlife, particularly wild meat, in urban restaurant settings. To meet this demand, poaching of wildlife is widespread, threatening regional and international biodiversity. Previous interventions to tackle illegal and potentially unsustainable consumption of wild meat in Vietnam have generally focused on limiting supply. While critical, they have been impeded by a lack of resources, the presence of increasingly organised criminal networks and corruption. Attention is, therefore, turning to the consumer, but a paucity of research investigating consumer demand for wild meat will impede the creation of effective consumer-centred interventions. Here we used a mixed-methods research approach comprising a hypothetical choice modelling survey and qualitative interviews to explore the drivers of wild meat consumption and consumer preferences among residents of Ho Chi Minh City, Vietnam. Our findings indicate that demand for wild meat is heterogeneous and highly context specific. Wild-sourced, rare, and expensive wild meat-types are eaten by those situated towards the top of the societal hierarchy to convey wealth and status and are commonly consumed in lucrative business contexts. Cheaper, legal and farmed substitutes for wild-sourced meats are also consumed, but typically in more casual consumption or social drinking settings. We explore the implications of our results for current conservation interventions in Vietnam that attempt to tackle illegal and potentially unsustainable trade in and consumption of wild meat and detail how our research informs future consumer-centric conservation actions

    The Multiple Process Model of Goal-directed Reaching Revisited

    Get PDF
    Recently our group forwarded a model of speed-accuracy relations in goal-directed reaching. A fundamental feature of our multiple process model was the distinction between two types of online regulation: impulse control and limb-target control. Impulse control begins during the initial stages of the movement trajectory and involves a comparison of actual limb velocity and direction to an internal representation of expectations about the limb trajectory. Limb-target control involves discrete error-reduction based on the relative positions of the limb and the target late in the movement. Our model also considers the role of eye movements, practice, energy optimization and strategic behavior in limb control. Here, we review recent work conducted to test specific aspects of our model. As well, we consider research not fully incorporated into our earlier contribution. We conclude that a slightly modified and expanded version of our model, that includes crosstalk between the two forms of online regulation, does an excellent job of explaining speed, accuracy, and energy optimization in goal-directed reaching
    • …
    corecore