18,049 research outputs found

    Using Taint Analysis and Reinforcement Learning (TARL) to Repair Autonomous Robot Software

    Full text link
    It is important to be able to establish formal performance bounds for autonomous systems. However, formal verification techniques require a model of the environment in which the system operates; a challenge for autonomous systems, especially those expected to operate over longer timescales. This paper describes work in progress to automate the monitor and repair of ROS-based autonomous robot software written for an a-priori partially known and possibly incorrect environment model. A taint analysis method is used to automatically extract the data-flow sequence from input topic to publish topic, and instrument that code. A unique reinforcement learning approximation of MDP utility is calculated, an empirical and non-invasive characterization of the inherent objectives of the software designers. By comparing off-line (a-priori) utility with on-line (deployed system) utility, we show, using a small but real ROS example, that it's possible to monitor a performance criterion and relate violations of the criterion to parts of the software. The software is then patched using automated software repair techniques and evaluated against the original off-line utility.Comment: IEEE Workshop on Assured IEEE Workshop on Assured Autonomous Systems, May, 202

    The mid-domain effect: It’s not just about space

    Get PDF
    Ecologists and biogeographers have long sought to understand how and why diversity varies across space. Up until the late 20th century, the dominant role of environmental gradients and historical processes in driving geographical species richness patterns went largely undisputed. However, almost 20 years ago, Colwell & Hurtt (1994) proposed a radical reappraisal of ecological gradient theory that called into question decades of empirical and theoretical research. That controversial idea was later termed the ‘the mid-domain effect’: the simple proposition that in the absence of environmental gradients, the random placement of species ranges within a bounded domain will give rise to greatest range overlap, and thus richness, at the center of the domain (Colwell & Lees, 2000) (Fig. 1a). The implication of this line of reasoning is that the conventional null model of equal species richness regardless of latitude, elevation or depth should be replaced by one where richness peaks at some midpoint in geographical space. Our intention here is to draw attention to a neglected, yet important manifestation of the mid-domain effect, namely the application of mid-domain models (also referred to as geometric constraint models) to non-spatial domains. If individual species have ranges that exist not just in geographical space but also in environmental factors, such as temperature, rainfall, pH, productivity or disturbance, shouldn’t we also expect mid-domain richness peaks along non-spatial gradients? A mid-domain model applied to non-spatial gradients predicts the maximum potential richness for every value of an environmental factor. As with spatial mid-domain models, realized richness would probably be less, but the limits to richness are still predicted to be hump-shaped. Indeed, hump-shaped relationships emerge with remarkably high frequency across various non-spatial gradients. For instance, two of ecology’s most fundamental, albeit controversial theories – the productivity–diversity relationship and the intermediate disturbance hypothesis – predict mid-domain peaks in species richness. However, the potential of non-spatial mid-domain models has gone largely ignored

    Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery

    Full text link
    The observation of a new boson of mass \sim 125\gev at the CERN LHC may finally have revealed the existence of a Higgs boson. Now we have the opportunity to scrutinize its properties, determining its quantum numbers and couplings to the standard model particles, in order to confirm or not its discovery. We show that by the end of the 8 TeV run, combining the entire data sets of ATLAS and CMS, it will be possible to discriminate between the following discovery alternatives: a scalar JP=0+J^P=0^+ or a tensor JP=2+J^P=2^+ particle with minimal couplings to photons, at a 5σ5\sigma statistical confidence level at least, using only diphotons events. Our results are based on the calculation of a center-edge asymmetry measure of the reconstructed {\it sPlot} scattering polar angle of the diphotons. The results based on asymmetries are shown to be rather robust against systematic uncertainties with comparable discrimination power to a log likelihood ratio statistic.Comment: 11 pages, 6 figures, 1 table. References added, minor typos correcte

    Standard Model Top Quark Asymmetry at the Fermilab Tevatron

    Full text link
    Top quark pair production at proton-antiproton colliders is known to exhibit a forward-backward asymmetry due to higher-order QCD effects. We explore how this asymmetry might be studied at the Fermilab Tevatron, including how the asymmetry depends on the kinematics of extra hard partons. We consider results for top quark pair events with one and two additional hard jets. We further note that a similar asymmetry, correlated with the presence of jets, arises in specific models for parton showers in Monte Carlo simulations. We conclude that the measurement of this asymmetry at the Tevatron will be challenging, but important both for our understanding of QCD and for our efforts to model it.Comment: 26 p., 10 embedded figs., comment added, version to appear in PR

    Symmetric mixed states of nn qubits: local unitary stabilizers and entanglement classes

    Full text link
    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states into six classes. These include the stabilizer types of the Werner states, the GHZ state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for published versio

    Localization Transition of Biased Random Walks on Random Networks

    Full text link
    We study random walks on large random graphs that are biased towards a randomly chosen but fixed target node. We show that a critical bias strength b_c exists such that most walks find the target within a finite time when b>b_c. For b<b_c, a finite fraction of walks drifts off to infinity before hitting the target. The phase transition at b=b_c is second order, but finite size behavior is complex and does not obey the usual finite size scaling ansatz. By extending rigorous results for biased walks on Galton-Watson trees, we give the exact analytical value for b_c and verify it by large scale simulations.Comment: 4 pages, includes 4 figure

    Uncomplicated term vaginal delivery following magnetic resonance-guided focused ultrasound surgery for uterine fibroids.

    Get PDF
    A 35 year-old para 1+0 underwent MRgFUS per study protocol for multiple uterine fibroids, the largest of which measured 5 cm. She conceived 10 months following the procedure. The patient was induced at 41+6 weeks and underwent a normal vaginal delivery
    • …
    corecore