287 research outputs found
Thixotropy in macroscopic suspensions of spheres
An experimental study of the viscosity of a macroscopic suspension, i.e. a
suspension for which Brownian motion can be neglected, under steady shear is
presented. The suspension is prepared with a high packing fraction and is
density-matched in a Newtonian carrier fluid. The viscosity of the suspension
depends on the shear rate and the time of shearing. It is shown for the first
time that a macroscopic suspension shows thixotropic viscosity, i.e.
shear-thinning with a long relaxation time as a unique function of shear. The
relaxation times show a systematic decrease with increasing shear rate. These
relaxation times are larger when decreasing the shear rates, compared to those
observed after increasing the shear. The time scales involved are about 10000
times larger than the viscous time scale and about 1000 times smaller than the
thermodynamic time scale. The structure of the suspension at the outer cylinder
of a viscometer is monitored with a camera, showing the formation of a
hexagonal structure. The temporal decrease of the viscosity under shear
coincides with the formation of this hexagonal pattern
Study of the q^2-Dependence of B --> pi ell nu and B --> rho(omega)ell nu Decay and Extraction of |V_ub|
We report on determinations of |Vub| resulting from studies of the branching
fraction and q^2 distributions in exclusive semileptonic B decays that proceed
via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson
pairs collected at the Y(4S) resonance with the CLEO II detector. We measure
B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 ->
rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the
errors are statistical, experimental systematic, systematic due to residual
form-factor uncertainties in the signal, and systematic due to residual
form-factor uncertainties in the cross-feed modes, respectively. We also find
B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with
what is expected from the B -> pi l nu mode and quark model symmetries. We
extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and
Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals
yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu,
and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu,
where the errors are statistical, experimental systematic, theoretical, and
signal form-factor shape, respectively. Our combined value from both decay
modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.Comment: 45 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Search for CP Violation in D^0--> K_S^0 pi^+pi^-
We report on a search for CP violation in the decay of D0 and D0B to Kshort
pi+pi-. The data come from an integrated luminosity of 9.0 1/fb of e+e-
collisions at sqrt(s) ~ 10 GeV recorded with the CLEO II.V detector. The
resonance substructure of this decay is well described by ten quasi-two-body
decay channels (K*-pi+, K*0(1430)-pi+, K*2(1430)-pi+, K*(1680)-pi+, Kshort rho,
Kshort omega, Kshort f0(980), Kshort f2(1270), Kshort f0(1370), and the ``wrong
sign'' K*+ pi-) plus a small non-resonant component. We observe no evidence for
CP violation in the amplitudes and phases that describe the decay D0 to K_S^0
pi+pi-.Comment: 10 pages, 3 figures, also available at
http://w4.lns.cornell.edu/public/CLNS/, submitted to PR
Measurement of Lepton Momentum Moments in the Decay bar{B} \to X \ell \bar{\nu} and Determination of Heavy Quark Expansion Parameters and |V_cb|
We measure the primary lepton momentum spectrum in B-bar to X l nu decays,
for p_l > 1.5 GeV/c in the B rest frame. From this, we calculate various
moments of the spectrum. In particular, we find R_0 = [int(E_l>1.7)
(dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = 0.6187 +/- 0.0014_stat
+/- 0.0016_sys and R_1 = [int(E_l>1.5) E_l(dGam/dE_sl)*dE_l] / [int(E_l>1.5)
(dGam/dE_sl)*dE_l] = (1.7810 +/- 0.0007_stat +/- 0.0009_sys) GeV. We use these
moments to determine non-perturbative parameters governing the semileptonic
width. In particular, we extract the Heavy Quark Expansion parameters
Lambda-bar = (0.39 +/- 0.03_stat +/- 0.06_sys +/- 0.12_th) GeV and lambda_1 =
(-0.25 +/- 0.02_stat +/- 0.05_sys +/- 0.14_th) GeV^2. The theoretical
constraints used are evaluated through order 1/M_B^3 in the non-perturbative
expansion and beta_0*alpha__s^2 in the perturbative expansion. We use these
parameters to extract |V_cb| from the world average of the semileptonic width
and find |V_cb| = (40.8 +/- 0.5_Gam-sl +/- 0.4_(lambda_1,Lambda-bar)-exp +/-
0.9_th) x 10^-3. In addition, we extract the short range b-quark mass m_b^1S =
(4.82 +/- 0.07_exp +/- 0.11_th) GeV/c^2. Finally, we discuss the implications
of our measurements for the theoretical understanding of inclusive semileptonic
processes.Comment: 21 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Measurement of the Mass Splittings between the States
We present new measurements of photon energies and branching fractions for
the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the
chi_b states are determined from the measured radiative photon energies. The
ratio of mass splittings between the chi_b substates,
r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information
on the nature of the bbbar confining potential. We find
r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world
average, but more consistent with the theoretical expectation that r(1P)<r(2P);
i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than
for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Molecular and Historical Aspects of Corn Belt Dent Diversity
Tens-of-thousands of open-pollinated cultivars of corn (Zea mays L.) are being maintained in germplasm banks. Knowledge of the amount and distribution of genetic variation within and among accessions can aid end users in choosing among them. We estimated molecular genetic variation and looked for influences of pedigree, adaptation, and migration in the genetic makeup of conserved Corn-Belt Dent-related germplasm. Plants sampled from 57 accessions representing Corn-Belt Dents, Northern Flints, Southern Dents, plus 12 public inbreds, were genotyped at 20 simple sequence repeat (SSR) loci. For 47 of the accessions, between 5 and 23 plants per accession were genotyped (mean = 9.3). Mean number of alleles per locus was 6.5 overall, 3.17 within accessions, and 3.20 within pooled inbreds. Mean gene diversity was 0.53 within accessions and 0.61 within pooled inbreds. Open-pollinated accessions showed a tendency toward inbreeding (FIS = 0.09), and 85% of genetic variation was shared among them. A Fitch-Margoliash tree strongly supported the distinctiveness of flint from dent germplasm but did not otherwise reveal evidence of genetic structure. Mantel tests revealed significant correlations between genetic distance and geographical (r = 0.54, P= 0.04) or maturity zone (r = 0.33, P = 0.03) distance only if flint germplasm was included in the analyses. A significant correlation (r = 0.76, P \u3c 0.01) was found between days to pollen shed and maturity zone of accession origin. Pedigree, rather than migration or selection, has most influenced the genetic structure of the extant representatives of the open-pollinated cultivars at these SSR loci
Solar parameters for modeling interplanetary background
The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE)
Working Team of the International Space Science Institute in Bern, Switzerland,
was to establish a common calibration of various UV and EUV heliospheric
observations, both spectroscopic and photometric. Realization of this goal
required an up-to-date model of spatial distribution of neutral interstellar
hydrogen in the heliosphere, and to that end, a credible model of the radiation
pressure and ionization processes was needed. This chapter describes the solar
factors shaping the distribution of neutral interstellar H in the heliosphere.
Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant
radiation pressure force acting on neutral H atoms in the heliosphere, solar
EUV radiation and the photoionization of heliospheric hydrogen, and their
evolution in time and the still hypothetical variation with heliolatitude.
Further, solar wind and its evolution with solar activity is presented in the
context of the charge exchange ionization of heliospheric hydrogen, and in the
context of dynamic pressure variations. Also the electron ionization and its
variation with time, heliolatitude, and solar distance is presented. After a
review of all of those topics, we present an interim model of solar wind and
the other solar factors based on up-to-date in situ and remote sensing
observations of solar wind. Results of this effort will further be utilised to
improve on the model of solar wind evolution, which will be an invaluable asset
in all heliospheric measurements, including, among others, the observations of
Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far
UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific
Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe
Common variants near MC4R are associated with fat mass, weight and risk of obesity.
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits
- …