1,265 research outputs found

    Thermopower-based hot electron thermometry of helium surface states at 1.6 K

    Full text link
    We have developed a method to probe the temperature of surface state electrons (SSE) above a superfluid Helium-4 surface using the Seebeck effect. In contrast to previously used SSE thermometry, this technique does not require detailed knowledge of the non-linear mobility. We demonstrate the use of this method by measuring energy relaxation of SSE at 1.6 K in a microchannel device with 0.6\:\mu\mbox{m} deep helium. In this regime, both vapor atom scattering and 2-ripplon scattering contribute to energy relaxation to which we compare our measurements. We conclude that this technique provides a reliable measure of electron temperature while requiring a less detailed understanding of the electron interactions with the environment than previously utilized thermometry techniques

    Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Get PDF
    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube

    Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region.</p> <p>Methods</p> <p>Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed.</p> <p>Results</p> <p>An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations.</p> <p>Conclusion</p> <p>This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.</p

    Stark Tuning of Donor Electron Spins in Silicon

    Get PDF
    We report Stark shift measurements for 121Sb donor electron spins in silicon using pulsed electron spin resonance. Interdigitated metal gates on top of a Sb-implanted 28Si epi-layer are used to apply electric fields. Two Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g-factor. The hyperfine term prevails at X-band magnetic fields of 0.35T, while the g-factor term is expected to dominate at higher magnetic fields. A significant linear Stark effect is also resolved presumably arising from strain.Comment: 10 pages, 4 figures, to be submitted to PR
    corecore