1,017 research outputs found
Genetic marking and characterization of Tac2-expressing neurons in the central and peripheral nervous system
Background: The neurocircuits that process somatic sensory information in the dorsal horn of the spinal cord are still poorly understood, with one reason being the lack of Cre lines for genetically marking or manipulating selective subpopulations of dorsal horn neurons. Here we describe Tac2-Cre mice that were generated to express the Cre recombinase gene from the Tac2 locus. Tachykinin 2 (Tac2) encodes a neurotransmitter, neurokinin B (NKB). Results: By crossing Tac2-Cre mice with ROSA26-tdTomato reporter mice, we directly visualized Tac2 lineage neurons in the dorsal root ganglia, the dorsal horn of the spinal cord, and many parts of the brain including the olfactory bulb, cerebral cortex, amygdala, hippocampus, habenula, hypothalamus, and cerebellum. This Tac2-Cre allele itself was a null allele for the Tac2 gene. Behavioral analyses showed that Tac2 homozygous null mice responded normally to a series of algogenic (pain-inducing) and pruritic (itch-inducing) stimuli. Conclusions: Tac2-Cre mice are a useful tool to mark specific subsets of neurons in the sensory ganglia, the dorsal spinal cord, and the brain. These mice can also be used for future genetic manipulations to study the functions of Tac2-expressing neurons or the functions of genes expressed in these neurons
Remote disability and leprosy services via basic communications technology
This short report describes the rationale for and process of developing and refining a manual to assist professionals, workers, families, volunteers, and people with disabilities in low- and middle-income countries (LMIC), to make better use of appropriate and accessible communications technology. The manual is intended as a basic step towards enhancing disability and leprosy services where they are not accessible and/or affordable to people in remote areas of LMIC.
A semi-formal process comprising several layers of feedback and review, and subsequent preliminary evaluation was encouraging. It suggests that the pilot version warrants further implementation as well as more formal research to rigorously evaluate the effectiveness and to refine the content of the manual
Determining a robust indirect measurement of leaf area index in California vineyards for validating remote sensing-based retrievals
Accurate ground-based measurements of leaf area index (LAI) are needed for validation of remote sensing-based retrievals used in models estimating plant water use, stress, carbon assimilation and other land surface processes. Several methods for indirect LAI estimation with the Plant Canopy Analyzer (PCA, LAI-2200C, LI-COR, Lincoln, NE, USA) were evaluated using destructive (direct) leaf area measurements in three split-canopy vineyards and one double-vertical vineyard in California, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). A method with the sensor facing the canopy, and four readings occurring evenly across the interrow space, had a coefficient of determination (R2) of 0.87 and relative root mean square error (RRMSE) of 16%, when compared to direct LAI measurements via destructive sampling. A previously used method, with the sensor facing down-row, showed lower correlation to direct LAI (R2 = 0.75, RRMSE = 33%) and underestimation which was mitigated by removing the outer sensor rings from analysis. A PCA method is recommended for rapid and accurate LAI estimation in split-canopy vineyards, though local calibration may be required. The method was tested within small units of ground surface area, which compliments high-resolution datasets such as those acquired by small unmanned aerial vehicles. The utility of ground-based LAI measurements to validate remote sensing products is discussed.info:eu-repo/semantics/acceptedVersio
Evaluation of physicochemical characteristics and genetic diversity of widely consumed rice varieties in Kyaukse area, Myanmar
Consumer preferences are greatly influenced by eating and cooking qualities of rice grains, along with the economic value of a specific rice variety. This study was to evaluate ten rice varieties including the check variety IR64 on their physicochemical, cooking and eating qualities as well as to identify their genetic diversity using SSR markers. Most rice varieties are medium-grain types based on length-breadth ratio, whereas the famous Myanmar rice variety, Paw San Bay Kyar, (PSBK) is bold. PSBK showed the best cooking and eating quality traits with intermediate amylose content (AC), intermediate gelatinization temperature (GT), soft gel consistency (GC), and the highest elongation ratio among the studied rice varieties. Seventeen SSR markers linked with cooking and eating traits were used to assess the extent of polymorphism and genetic variation among ten rice varieties. There were 49 alleles in total, with an average of 2.88 alleles per locus. RM592 had the maximum number of alleles. The average PIC value ranged from 0.22 (RM540) to 0.77 (RM592). Cluster analysis with UPGMA method based on Jaccard’s similarity coefficient divided ten rice varieties into two main groups and four sub-clusters. In multiple regression analysis, RM190 and Wx primers were discovered to be significantly associated with AC, GC and GT of cooking and eating quality traits. This study could contribute to the choice of rice varieties with superior cooking and eating qualities for rice breeding programs by implementing physicochemical characteristics and molecular analysis
Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes
Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field ( 10 m) and plant canopy (1 m) scale evapotranspiration (ET) monitoring. In this study, highresolution (sub-meter-scale) thermal infrared and multispectral shortwave data from aircraft are used to map ET over vineyards in central California with the two-source energy balance (TSEB) model and with a simple model having operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature). The latter uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from 5 days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based measurements of sensible (H) and latent heat (LE) flux or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EFDLE/(H CLE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on 2 of the 5 days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in daily water use estimates for these 2 days for the vineyards. Model sensitivity analysis demonstrated the high degree of sensitivity of the TSEB model to the accuracy of the TR data, while the DATTUTDUT model was insensitive to systematic errors in TR as is the case with contextual-based models. However, it is shown that the study domain and spatial resolution will significantly influence the ET estimation from the DATTUTDUT model. Future work is planned for developing a hybrid approach that leverages the strengths of both modeling schemes and is simple enough to be used operationally with high-resolution imagery
Estimation of Evapotranspiration and Energy Fluxes Using a Deep-Learning-Based High-Resolution Emissivity Model and the Two-Source Energy Balance Model with sUAS Information
Surface temperature is necessary for the estimation of energy fluxes and evapotranspiration from satellites and airborne data sources. For example, the Two-Source Energy Balance (TSEB) model uses thermal information to quantify canopy and soil temperatures as well as their respective energy balance components. While surface (also called kinematic) temperature is desirable for energy balance analysis, obtaining this temperature is not straightforward due to a lack of spatially estimated narrowband (sensor-specific) and broadband emissivities of vegetation and soil, further complicated by spectral characteristics of the UAV thermal camera. This study presents an effort to spatially model narrowband and broadband emissivities for a microbolometer thermal camera at UAV information resolution (~0.15 m) based on Landsat and NASA HyTES information using a deep learning (DL) model. The DL model is calibrated using equivalent optical Landsat / UAV spectral information to spatially estimate narrowband emissivity values of vegetation and soil in the 7–14- nm range at UAV resolution. The resulting DL narrowband emissivity values were then used to estimate broadband emissivity based on a developed narrowband-broadband emissivity relationship using the MODIS UCSB Emissivity Library database. The narrowband and broadband emissivities were incorporated into the TSEB model to determine their impact on the estimation of instantaneous energy balance components against ground measurements. The proposed effort was applied to information collected by the Utah State University AggieAir small Unmanned Aerial Systems (sUAS) Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) over a vineyard located in Lodi, California. A comparison of resulting energy balance component estimates, with and without the inclusion of high-resolution narrowband and broadband emissivities, against eddy covariance (EC) measurements under different scenarios are presented and discussed
To What Extent Does the Eddy Covariance Footprint Cutoff Influence the Estimation of Surface Energy Fluxes Using Two Source Energy Balance Model and High-Resolution Imagery in Commercial Vineyards?
Validation of surface energy fluxes from remote sensing sources is performed using instantaneous field measurements obtained from eddy covariance (EC) instrumentation. An eddy covariance measurement is characterized by a footprint function / weighted area function that describes the mathematical relationship between the spatial distribution of surface flux sources and their corresponding magnitude. The orientation and size of each flux footprint / source area depends on the micro-meteorological conditions at the site as measured by the EC towers, including turbulence fluxes, friction velocity (ustar), and wind speed, all of which influence the dimensions and orientation of the footprint. The total statistical weight of the footprint is equal to unity. However, due to the large size of the source area / footprint, a statistical weight cutoff of less than one is considered, ranging between 0.85 and 0.95, to ensure that the footprint model is located inside the study area. This results in a degree of uncertainty when comparing the modeled fluxes from remote sensing energy models (i.e., TSEB2T) against the EC field measurements. In this research effort, the sensitivity of instantaneous and daily surface energy flux estimates to footprint weight cutoffs are evaluated using energy balance fluxes estimated with multispectral imagery acquired by AggieAir sUAS (small Unmanned Aerial Vehicle) over commercial vineyards near Lodi, California, as part of the ARS-USDA Agricultural Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The instantaneous fluxes from the eddy covariance tower will be compared against instantaneous fluxes obtained from different TSEB2T aggregated footprint weights (cutoffs). The results indicate that the size, shape, and weight of pixels inside the footprint source area are strongly influenced by the cutoff values. Small cutoff values, such as 0.3 and 0.35, yielded high weights for pixels located within the footprint domain, while large cutoffs, such as 0.9 and 0.95, result in low weights. The results also indicate that the distribution of modelled LE values within the footprint source area are influenced by the cutoff values. A wide variation in LE was observed at high cutoffs, such as 0.90 and 0.95, while a low variation was observed at small cutoff values, such as 0.3. This happens due to the large number of pixel units involved inside the footprint domain when using high cutoff values, whereas a limited number of pixels are obtained at lower cutoff values
Implications of Soil and Canopy Temperature Uncertainty in the Estimation of Surface Energy Fluxes Using TSEB2T and High-Resolution Imagery in Commercial Vineyards
Estimation of surface energy fluxes using thermal remote sensing–based energy balance models (e.g., TSEB2T) involves the use of local micrometeorological input data of air temperature, wind speed, and incoming solar radiation, as well as vegetation cover and accurate land surface temperature (LST). The physically based Two-source Energy Balance with a Dual Temperature (TSEB2T) model separates soil and canopy temperature (Ts and Tc) to estimate surface energy fluxes including Rn, H, LE, and G. The estimation of Ts and Tc components for the TSEB2T model relies on the linear relationship between the composite land surface temperature and a vegetation index, namely NDVI. While canopy and soil temperatures are controlling variables in the TSEB2T model, they are influenced by the NDVI threshold values, where the uncertainties in their estimation can degrade the accuracy of surface energy flux estimation. Therefore, in this research effort, the effect of uncertainty in Ts and Tc estimation on surface energy fluxes will be examined by applying a Monte Carlo simulation on NDVI thresholds used to define canopy and soil temperatures. The spatial information used is available from multispectral imagery acquired by the AggieAir sUAS Program at Utah State University over vineyards near Lodi, California as part of the ARS-USDA Agricultural Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The results indicate that LE is slightly sensitive to the uncertainty of NDVIs and NDVIc. The observed relative error of LE corresponding to NDVIs uncertainty was between -1% and 2%, while for NDVIc uncertainty, the relative error was between -2.2% and 1.2%. However, when the combined NDVIs and NDVIc uncertainties were used simultaneously, the domain of the observed relative error corresponding to the absolute values of |ΔLE| was between 0% and 4%
Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models
In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard located in California are presented. Toward this end, an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height, volume, surface area, and projected surface area of the plant canopy solely based on point cloud information. In addition to biomass information, it can add multi-spectral UAV information to point clouds and provide spectral-structural canopy properties. The biomass information is used to assess its relationship with in situ Leaf Area Index (LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of plant parameters, spatial information of fractional cover, canopy height, and canopy width are input to the TSEB model. Therefore, the two main objectives for incorporating point cloud information into remote sensing ET models for this study are to (1) evaluate the possible improvement in the estimation of LAI and biomass parameters from point cloud information in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB model to using average/nominal values versus spatially-distributed canopy fractional cover, height, and width information derived from point cloud data. The proposed algorithm is tested on imagery from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located in California. The results indicate a robust relationship between in situ LAI measurements and estimated biomass parameters from the point cloud data, and improvement in the agreement between TSEB model output of ET with tower measurements when employing LAI and spatially-distributed canopy structure parameters derived from the point cloud data
Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy Balance Model and sUAS Imagery in Vineyards
Evapotranspiration (ET) is a key variable for hydrology and irrigation water management,with significant importance in drought-stricken regions of the western US. This is particularly true for California, which grows much of the high-value perennial crops in the US. The advent of small Unmanned Aerial System (sUAS) with sensor technology similar to satellite platforms allows for the estimation of high-resolution ET at plant spacing scale for individual fields. However, while multiple efforts have been made to estimate ET from sUAS products, the sensitivity of ET models to different model grid size/resolution in complex canopies, such as vineyards, is still unknown.The variability of row spacing, canopy structure, and distance between fields makes this information necessary because additional complexity processing individual fields. Therefore, processing the entire image at a fixed resolution that is potentially larger than the plant-row separation is more efficient.From a computational perspective, there would be an advantage to running models at much coarser resolutions than the very fine native pixel size from sUAS imagery for operational applications. In this study, the Two-Source Energy Balance with a dual temperature (TSEB2T) model, which uses remotely sensed soil/substrate and canopy temperature from sUAS imagery, was used to estimate ET and identify the impact of spatial domain scale under different vine phenological conditions. The analysis relies upon high-resolution imagery collected during multiple years and times by the Utah State University Aggie Air TM sUAS program over a commercial vineyard located near Lodi, California.This project is part of the USDA-Agricultural Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). Original spectral and thermal imagery data from sUAS were at 10 cm and 60 cm per pixel, respectively, and multiple spatial domain scales (3.6, 7.2,14.4, and 30 m) were evaluated and compared against eddy covariance (EC) measurements. Results indicated that the TSEB2T model is only slightly affected in the estimation of the net radiation (Rn) and the soil heat flux (G) at different spatial resolutions, while the sensible and latent heat fluxes (HandLE, respectively) are significantly affected by coarse grid sizes. The results indicated overestimation of H and underestimation of LE values, particularly at Landsat scale (30 m). This refers to the non-linear relationship between the land surface temperature (LST) and the normalized difference vegetation index (NDVI) at coarse model resolution. Another predominant reason for LE reduction in TSEB2T was the decrease in the aerodynamic resistance (Ra), which is a function of the friction velocity (u∗)that varies with mean canopy height and roughness length. While a small increase in grid size can be implemented, this increase should be limited to less than twice the smallest row spacing present in the sUAS imagery. The results also indicated that the mean LE at field scale is reduced by 10% to 20% at coarser resolutions, while the with-in field variability in LE values decreased significantly at the larger grid sizes and ranged between approximately 15% and 45%. This implies that, while the field-scale values of LE are fairly reliable at larger grid sizes, the with-in field variability limits its use for precision agriculture applications
- …