To What Extent Does the Eddy Covariance Footprint Cutoff Influence the Estimation of Surface Energy Fluxes Using Two Source Energy Balance Model and High-Resolution Imagery in Commercial Vineyards?

Abstract

Validation of surface energy fluxes from remote sensing sources is performed using instantaneous field measurements obtained from eddy covariance (EC) instrumentation. An eddy covariance measurement is characterized by a footprint function / weighted area function that describes the mathematical relationship between the spatial distribution of surface flux sources and their corresponding magnitude. The orientation and size of each flux footprint / source area depends on the micro-meteorological conditions at the site as measured by the EC towers, including turbulence fluxes, friction velocity (ustar), and wind speed, all of which influence the dimensions and orientation of the footprint. The total statistical weight of the footprint is equal to unity. However, due to the large size of the source area / footprint, a statistical weight cutoff of less than one is considered, ranging between 0.85 and 0.95, to ensure that the footprint model is located inside the study area. This results in a degree of uncertainty when comparing the modeled fluxes from remote sensing energy models (i.e., TSEB2T) against the EC field measurements. In this research effort, the sensitivity of instantaneous and daily surface energy flux estimates to footprint weight cutoffs are evaluated using energy balance fluxes estimated with multispectral imagery acquired by AggieAir sUAS (small Unmanned Aerial Vehicle) over commercial vineyards near Lodi, California, as part of the ARS-USDA Agricultural Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The instantaneous fluxes from the eddy covariance tower will be compared against instantaneous fluxes obtained from different TSEB2T aggregated footprint weights (cutoffs). The results indicate that the size, shape, and weight of pixels inside the footprint source area are strongly influenced by the cutoff values. Small cutoff values, such as 0.3 and 0.35, yielded high weights for pixels located within the footprint domain, while large cutoffs, such as 0.9 and 0.95, result in low weights. The results also indicate that the distribution of modelled LE values within the footprint source area are influenced by the cutoff values. A wide variation in LE was observed at high cutoffs, such as 0.90 and 0.95, while a low variation was observed at small cutoff values, such as 0.3. This happens due to the large number of pixel units involved inside the footprint domain when using high cutoff values, whereas a limited number of pixels are obtained at lower cutoff values

    Similar works