2,319 research outputs found
Determination of the rank of an integration lattice
The continuing and widespread use of lattice rules for high-dimensional numerical quadrature is driving the development of a rich and detailed theory. Part of this theory is devoted to computer searches for rules, appropriate to particular situations.
In some applications, one is interested in obtaining the (lattice) rank of a lattice rule Q(Λ) directly from the elements of a generator matrix B (possibly in upper triangular lattice form) of the corresponding dual lattice Λ⊥. We treat this problem in detail, demonstrating the connections between this (lattice) rank and the conventional matrix rank deficiency of modulo p versions of B
The Number of Lattice Rules of Specified Upper Class and Rank
The upper class of a lattice rule is a convenient entity for classification and other purposes. The rank of a lattice rule is a basic characteristic, also used for classification. By introducing a rank proportionality factor and obtaining certain recurrence relations, we show how many lattice rules of each rank exist in any prime upper class. The Sylow p-decomposition may be used to obtain corresponding results for any upper class
Vibration durability testing of nickel manganese cobalt oxide (NMC) lithium-Ion 18,650 battery cells
Electric vehicle (EV) manufacturers are employing cylindrical format cells in the construction of the vehicles’ battery systems. There is evidence to suggest that both the academic and industrial communities have evaluated cell degradation due to vibration and other forms of mechanical loading. The primary motivation is often the need to satisfy the minimum requirements for safety certification. However, there is limited research that quantifies the durability of the battery and in particular, how the cells will be affected by vibration that is representative of a typical automotive service life (e.g., 100,000 miles). This paper presents a study to determine the durability of commercially available 18,650 cells and quantifies both the electrical and mechanical vibration-induced degradation through measuring changes in cell capacity, impedance and natural frequency. The impact of the cell state of charge (SOC) and in-pack orientation is also evaluated. Experimental results are presented which clearly show that the performance of 18,650 cells can be affected by vibration profiles which are representative of a typical vehicle life. Consequently, it is recommended that EV manufacturers undertake vibration testing, as part of their technology selection and development activities to enhance the quality of EVs and to minimize the risk of in-service warranty claims
SINGINT: Automatic numerical integration of singular integrands
We explore the combination of deterministic and Monte Carlo methods to facilitate efficient automatic numerical computation of multidimensional integrals with singular integrands. Two adaptive algorithms are presented that employ recursion and are runtime and memory optimised, respectively. SINGINT, a C implementation of the algorithms, is introduced and its utilisation in the calculation of particle scattering amplitudes is exemplified
Measuring Sulfur Isotope Ratios from Solid Samples with the Sample Analysis at Mars Instrument and the Effects of Dead Time Corrections
The Sample Analysis at Mars (SAM) instrument suite comprises the largest science payload on the Mars Science Laboratory (MSL) "Curiosity" rover. SAM will perform chemical and isotopic analysis of volatile compounds from atmospheric and solid samples to address questions pertaining to habitability and geochemical processes on Mars. Sulfur is a key element of interest in this regard, as sulfur compounds have been detected on the Martian surface by both in situ and remote sensing techniques. Their chemical and isotopic composition can belp constrain environmental conditions and mechanisms at the time of formation. A previous study examined the capability of the SAM quadrupole mass spectrometer (QMS) to determine sulfur isotope ratios of SO2 gas from a statistical perspective. Here we discuss the development of a method for determining sulfur isotope ratios with the QMS by sampling SO2 generated from heating of solid sulfate samples in SAM's pyrolysis oven. This analysis, which was performed with the SAM breadboard system, also required development of a novel treatment of the QMS dead time to accommodate the characteristics of an aging detector
Like second-hand smoke, racial discrimination at work can affect bystanders
But good mentors can buffer employees from the negative effects of workplace racism, write Belle Rose Ragins, Kyle Ehrhardt, Karen S. Lyness, Dianne Murphy and John Capma
Calibration of the Neutral Mass Spectrometer for the Lunar Atmosphere and Dust Environment Explorer
Science objectives of the LADEE Mission are to (1) determine the composition, and time variability of the tenuous lunar atmosphere and (2) to characterize the dust environment and its variability. These studies will extend the in-situ characterization of the environment that were carried out decades ago with the Apollo missions and a variety of ground based studies. The focused LADEE measurements will enable a more complete understanding of dust and gas sources and sinks. Sources of gas include UV photo-stimulated desorption, sputtering by plasma and micrometeorites, as well as thermal release of species such as argon from the cold service or venting from the lunar interior. Sinks include recondensation on the surface and escape through a variety of mechanisms. The LADEE science payload consists of an Ultraviolet Spectrometer, a Neutral Mass Spectrometer, and a Dust Detector. The LADEE orbit will include multiple passes at or below 50 km altitude and will target repeated sampling at the sunrise terminator where exospheric density will be highest for some thermally released species. The science mission will be implemented in approximately three months to allow measurements to be made over a period of one or more lunations In addition to the science mission NASA will use this mission to demonstrate optical communication technology away from low Earth orbit
Spin-1/2 J1-J2 model on the body-centered cubic lattice
Using exact diagonalization (ED) and linear spin wave theory (LSWT) we study
the influence of frustration and quantum fluctuations on the magnetic ordering
in the ground state of the spin-1/2 J1-J2 Heisenberg antiferromagnet (J1-J2
model) on the body-centered cubic (bcc) lattice. Contrary to the J1-J2 model on
the square lattice, we find for the bcc lattice that frustration and quantum
fluctuations do not lead to a quantum disordered phase for strong frustration.
The results of both approaches (ED, LSWT) suggest a first order transition at
J2/J1 0.7 from the two-sublattice Neel phase at low J2 to a collinear
phase at large J2.Comment: 6.1 pages 7 figure
Paper and electronic versions of HM-PRO, a novel patient-reported outcome measure for hematology: an equivalence study.
© 2019 Goswami, Oliva, Ionova et al.Aim:To determine measurement equivalence of paper and electronic application of the hematologi-cal malignancy-patient-reported outcome (HM-PRO), a specific measure for the evaluation of patient-reported outcomes in HMs.Patients & methods:Following International Society of Pharmacoeconomicsand Outcomes Research ePRO Good Research Practice Task Force guidelines, a total of 193 adult patientswith different HMs were recruited into a multicenter prospective study. The paper and the electronic ver-sion of the instrument were completed in the outpatient clinics in a randomized crossover design with a30-min time interval to minimize the learning effect. Those who completed the paper version first, com-pleted the electronic version after 30 min and vice versa. Instrument version and order effects were testedon total score of the two parts of the HM-PRO (Part A: quality of life and Part B: signs & symptoms) in atwo-way ANOVA with patients as random effects. Intraclass correlation coefficients (95% CI) and Spear-man’s rank correlation coefficients were used to evaluate test–retest reliability and reproducibility. Theeffects of instrument version and order were tested on total score of the two parts of HM-PRO.Results:The questionnaire version and administration order effects were not significant at the 5% level. Therewere no interactions found between these two factors for HM-PRO (Part A [quality of life]; p=0.95); and(part B [signs and symptoms]; p=0.72]. Spearman’s rank correlation coefficients were greater than 0.9, andintraclass correlation coefficients ranged from 0.94 to 0.98; furthermore, the scores were not statisticallydifferent between the two versions, showing acceptable reliability indexes. Noteworthy, the differencebetween the completion time for both paper (mean=6:38 min) and electronic version (mean=7:29 min)was not statistically significant (n=100; p=0.11). Patients did not report any difficulty in completing theelectronic version during cognitive interviews and were able to understand and respond spontaneously.Conclusion:Measurement equivalence has been demonstrated for the paper and electronic applicationof the HM-PRO.Peer reviewe
Exact diagonalization of the S=1/2 Heisenberg antiferromagnet on finite bcc lattices to estimate properties on the infinite lattice
Here we generate finite bipartite body-centred cubic lattices up to 32
vertices. We have studied the spin one half Heisenberg antiferromagnet by
diagonalizing its Hamiltonian on each of the finite lattices and hence
computing its ground state properties. By extrapolation of these data we obtain
estimates of the T = 0 properties on the infinite bcc lattice. Our estimate of
the T = 0 energy agrees to five parts in ten thousand with third order spin
wave and series expansion method estimates, while our estimate of the staggered
magnetization agrees with the spin wave estimate to within a quarter of one
percent.Comment: 16 pages, LaTeX, 1 ps figure, to appear in J.Phys.
- …
