
ar
X

iv
:p

hy
si

cs
/0

21
01

27
v1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 3
0

O
ct

 2
00

2

Edinburgh 2002/17

SINGINT: Automatic numerical integration of

singular integrands

Nikolas Kauer

School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK

Abstract

We explore the combination of deterministic and Monte Carlo methods to facili-
tate efficient automatic numerical computation of multidimensional integrals with
singular integrands. Two adaptive algorithms are presented that employ recursion
and are runtime and memory optimised, respectively. SINGINT, a C implementa-
tion of the algorithms, is introduced and its utilisation in the calculation of particle
scattering amplitudes is exemplified.

Key words: Adaptive numerical integration, multidimensional quadrature,
singular integrands, integration rules, Monte Carlo integration, recursion.

Email address: nkauer@ph.ed.ac.uk (Nikolas Kauer).

Preprint submitted to Elsevier Science 23 July 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28887209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/physics/0210127v1

Program summary

Title of program: SINGINT
Program obtainable from: http://www.ph.ed.ac.uk/~nkauer/singint/

Program requirements: SINGINT can be built with any compatible C and
Fortran compilers. It requires GNU Scientific Library 1 1.2. The program has
been tested with GNU Compiler Collection 2 3.1 on Red Hat Linux 7.1.
Programming language: C, F77
No. of bytes in distributed program: 26224
Distribution format: gzip-compressed tar file

Nature of physical problem:

Efficient, robust and automatic numerical computation of multidimensional
integrals with singular integrands, for example occurring in the calculation of
particle scattering amplitudes in perturbative field theory.

Method of solution:

Runtime- or memory-optimised algorithms that combine integration rule and
Monte Carlo techniques and employ recursion.

Restrictions on the complexity of the problem:

singint rec, the implementation of the recursive algorithm, is suitable for
integrands of up to 12 dimensions. singint cut, the implementation of the
global algorithm, is currently restricted to two dimensions. An extension of
the algorithm to more than two dimensions is straightforward and will be
implemented in a future version.

1 http://sources.redhat.com/gsl/
2 http://gcc.gnu.org

2

http://www.ph.ed.ac.uk/~nkauer/singint/

1 Introduction

While the practitioner can rely on highly efficient and robust automatic rou-
tines for the numerical integration of 1-dimensional integrals [1], for multidi-
mensional integrals the situation is more complicated and no mature universal
tool has emerged yet.

To guide our discussion we start by recalling the key features of a superior
numerical integration routine: It should be efficient, robust and automatic.
Efficient means that results of the desired precision are obtained using as
little resources as possible in terms of processor time and memory. Robust
means that the routine yields accurate results for a variety of integrands of
interest, for example, not only smooth ones, but also discontinuous or singular
integrands. Automatic implies that the routine requires minimal information
about the integrand, or, more precisely, that a “black box” that returns the
value of the integrand for any point in the integration volume is all that is
required. To devise one routine that excels in all three categories is extremely
challenging, but a number of complementary approaches have been developed
to satisfy more limited expectations.

Two basic approaches to numerical integration are deterministic integration
with integration rules and Monte Carlo integration [2]. Both methods have
strengths and weaknesses. Integration rules, on the one hand, yield precise
results with relatively few integrand evaluations, but they are not too robust
and work best for very smooth functions. Monte Carlo methods, on the other
hand, impose few requirements on the integrand, but are known to converge
slowly. To bridge the gap, adaptive procedures have been developed, that
select and evaluate suitable subregions separately, thus making deterministic
integration more robust and Monte Carlo integration more efficient.

As mentioned above, the use of Monte Carlo techniques is suggestive when
multidimensional, square-integrable functions with singularities need to be in-
tegrated. But, when fast integration or high precision are mandatory pure
Monte Carlo methods are not well suited. To enable rapid convergence, in-
tegration rule based approaches for singular integrands have been explored
in the literature [3]. As a result, highly efficient integrators exist that exploit
extrapolation methods and can be used if the location of all singularities is
known in analytic form. However, such procedures are not automatic and not
applicable if the location of singularities is unknown or difficult to determine.

In this article we therefore present two automatic procedures for the integra-
tion of low-dimensional singular integrands that aim to retain the performance
advantage of deterministic integration methods. This is achieved by the com-
bined use of integration rules and Monte Carlo sampling. To the best of our

3

knowledge, this combination has not previously been proposed in the litera-
ture.

A second objective of this article is to explore the applicability of recursion
to adaptive integration. Numerical algorithms have traditionally been imple-
mented in Fortran 77, which does not allow recursion. 3 One might therefore
conjecture that recursive techniques have not been explored by practitioners to
the desirable extent. To avoid being limited by such technicalities, SINGINT
is implemented in C, which allows to conveniently program with recursion. 4

The article is organised as follows: In Sections 2 and 3, we present two ef-
ficient algorithms for the automatic numerical integration of singular inte-
grands, which combine integration rule and Monte Carlo techniques. The first
algorithm is runtime optimised, while the second is fully recursive and has
small memory requirements. In Section 4, we introduce the interface of our
implementation and discuss important aspects of SINGINT’s use based on a
short example. In Section 5, we give numerical examples and discuss a practical
application in theoretical particle physics. The article closes with conclusions.

2 Global Algorithm

2.1 Method

The global algorithm we suggest decomposes the singular integrand f(x) into
a bounded function bc(x) and a singular rest sc(x) by introducing a cut pa-
rameter c > 0:

bc(x) :=







+c if f(x) > c

f(x) if −c ≤ f(x) ≤ c

−c if f(x) < −c

(1)

sc(x) := f(x) − bc(x) (2)

The bounded component bc(x) can then be integrated relying on automatic
deterministic methods for maximum efficiency. To integrate the singular com-

3 Recursive behaviour can and has nevertheless been implemented in Fortran 77
through simulated recursion, which requires unintuitive code. We also note that this
deficiency has been remedied in the Fortran 90 standard.
4 Our choice was also influenced by the fact that the Fortran compiler of the widely-
used GNU compiler collection does not support recursion.

4

ponent sc(x) we revert to Monte Carlo integration, an approach that is well
suited for irregular or singular integrands and requires no analytic knowledge
about the structure of the integrand, thus being automatic, too. These ad-
vantages are, however, offset by significantly slower convergence relative to
deterministic methods. With regard to our integrand decomposition, this in-
terplay suggests the existence of an optimal range for the cut parameter c.
Below that range, unnecessarily large, non-singular regions are Monte Carlo
integrated, causing slow overall convergence. Above that range, the determin-
istic routine has to integrate exceedingly steep peaks in the singular regions,
necessitating a high number of function evaluations, which again leads to slow
overall convergence. For cut parameters in the optimal range, however, the
two effects balance and efficiency is maximal. After both components have
been computed, the final result is obtained by adding up the integrals over
bc(x) and sc(x). It is obviously independent of the cut parameter c.

2.2 Optimisation

We employ an optimised approach to the Monte Carlo integration of sc(x)
that requires a 2-dimensional grid covering the integration region. During the
integration of bc(x), some evaluations of f(x) may return values above or below
the cuts, i.e. sc(x) 6= 0. In this case the grid cell that contains x is saved.
In a second step the integral over sc(x) is calculated by using all cells with
sc(x) 6= 0 that were detected in the previous step as seed cells. Note that the
number of seed cells found will typically be much smaller than the total number
of cells as long as the cut parameter c is chosen sufficiently large. sc(x) is
integrated by using crude Monte Carlo integration to evaluate all contributing
cells using a recursive algorithm that starts with seed cells. For Monte Carlo
integration in low dimensions (less than ca. 15 dimensions according to the
analysis in Ref. [4]) convergence can be improved significantly by using quasi-
random numbers rather than pseudo-random numbers. We therefore base the
sampling in our implementation on the low-discrepancy sequence of Ref. [5]. If
the result of a particular cell is finite, all neighbouring cells are also scheduled
for evaluation. This procedure is applied recursively until the region where
sc(x) is nonvanishing is covered. The recursive algorithm we employ is given
below as Algorithm 1 (using orientations to identify neighbouring cells). Note
that other seed cells encountered during execution are removed from the list
of remaining seed cells. The recursion stops when a cell evaluates to zero and
is therefore at the boundary of the integration region for sc(x). We refer to
such cells as “border” cells.

The recursion spreads in a “starlight-like” fashion and is therefore only suited
to cover convex areas. This limitation can be overcome with the following
extension: Apply the algorithm to one seed cell. Then make every encountered

5

Algorithm 1. recursive coverage of convex grid area

if valid cell then

process cell
if cell is start cell then

process cells N, NW, W, SW, S, SE, E, NE
else

if cell type is N then

process cell N
else if cell type is NW then

process cells N, NW, W
else if cell type is W then

process cell W
else if cell type is SW then

process cells W, SW, S
else if cell type is S then

process cell S
else if cell type is SE then

process cells S, SE, E
else if cell type is E then

process cell E
else if cell type is NE then

process cell E, NE, N
end if

end if

end if

border cell a start cell and apply the algorithm again. (The border cells of the
secondary runs are not made start cells.) This extension makes the procedure
more robust, but made little or no difference in our test runs. To rule out
repeated evaluations of the same cell, the status of each cell is tagged with
one of the following labels: unknown, finite, zero. Initially all cells are tagged
“unknown”. Cells tagged “finite” have already been evaluated and taken into
account, while cells tagged “zero” have already been identified as border cells.
Note that tagging each cell introduces a global element in the recursion, which
is permissible since the algorithm used to evaluate bc(x) is also global in nature
(see below). Once the enhanced algorithm has been run for all seed cells the
integration of sc(x) is complete.

To optimise the integration of bc(x) we utilize DCUHRE, a very efficient and
robust integrator for multidimensional integrals with bounded integrands de-
veloped by Berntsen et al. [6]. Its adaptive algorithm applies integration rules
to determine the integral and error over non-uniform subvolumes until the
desired total error is achieved. The algorithm is global, i.e. results for all sub-
volumes are retained, to be able to select at any stage the subvolume with the
largest error contribution for further refinement. This approach is optimal in

6

terms of runtime but expensive in terms of memory. We return to this issue
in Section 3.

3 Recursive Algorithm

Due to its global nature the approach described in Section 2 requires a po-
tentially large amount of memory, and the question arises if a viable “local”
alternative with small memory footprint can be found. To that end, we propose
a second, fully recursive approach. Assume the integral I0 over a hypercube
with volume V0 is to be determined with precision ∆I0. Starting with volume
V0 the following procedure is applied recursively:

(1) A value I and error estimate ∆I for the integral in the cell of volume V
is obtained by applying

a) an integration rule (ca. 200 integrand evaluations are necessary for a
degree 13 integration rule [6])

b) basic Monte Carlo integration with the same number of function eval-
uations as in a)

If both results are compatible within errors, the one with the lower error
estimate is selected, otherwise the result with the larger error is selected.

(2) The tolerable error 5 in the cell is ∆Imax := ∆I0

√

V/V0.

(3) If ∆I ≤ ∆Imax, no further action is necessary. If ∆I > ∆Imax, the cell
is divided into n subcells of equal volume, and the integrals Ii in the
subcells are determined as in (1).

(4) If ∆Idiv < ∆I/
√

n with ∆Idiv := [
∑n

i=1(∆Ii)
2]

1/2
, the procedure is applied

recursively to the subcells.
(5) If ∆Idiv ≥ ∆I/

√
n, further subdivision is not advantageous, and I is

Monte Carlo sampled until ∆I ≤ ∆Imax.

This procedure clearly shows that in general the algorithm that controls the
subdivision of the integration volume is conceptually distinct from the al-
gorithm used to integrate individual subcells. To let several complementary
integration methods compete in the latter adds flexibility and should typically
increase efficiency. Our experience in the context of the practical application
described in Section 5.2 confirms this hypothesis.

5 This condition guarantees that the overall error is at most ∆I0.

7

4 Using SINGINT

To get an overview of SINGINT’s interface, the header file singint.h is a
good starting point:

typedef void Integrand(const int* ndim, const double x[],

const int* numfun, double funvls[]);

typedef void Integrator(const int ndim, const double a[], const double b[],

Integrand* integrand, const double desired_abserr,

const double desired_relerr, const int maxpts,

double* result, double* abserr);

Integrator singint_mc;

Integrator singint_ir;

Integrator singint_rec;

Integrator singint_cut;

extern double singint_cut_parameter;

void singint_cut_callback(const int* ndim, const double x[],

const int* numfun, double funvls[]);

All integrand routines have to implement the function signature Integrand,
which essentially takes a point in the integration volume specified by array x

with *ndim elements as input and returns the integrand value at this point
in array element funvls[0]. In order to avoid an additional, performance re-
ducing integrand wrapper when applying integration rules, pointers are used
to satisfy Fortran calling conventions and the dummy argument *numfun (re-
stricted to 1) is introduced to create compatibility with DCUHRE.

The integrand routine is one of the arguments of the Integrator signature,
which all integrator functions implement. A list of all arguments with type
and short description follows:

ndim: const int number of dimensions of integral
a[]: const double lower limits of hypercubical integration volume
b[]: const double upper limits of hypercubical integration volume
integrand: Integrand* (pointer to) integrand function
desired abserr: const double desired absolute error of integration result
desired relerr: const double desired relative error of integration result
maxpts: const int maximum number of integrand evaluations (≥ minimum

given by IR MINPOINTSPERCELL)
result: double* integral estimate
abserr: double* estimated absolute error of result

8

The global algorithm (with cut parameter) and the recursive algorithm defined
above are implemented through the functions singint cut and singint rec,
respectively. For convenience, the underlying techniques, i.e. Monte Carlo and
integration rule-based integration, are implemented in integrators singint mc

and singint ir, respectively. Note that singint ir is currently a wrapper
function for DCUHRE and hence per se not suited for singular integrands
(see Section 2). A concise but complete example that illustrates how to use
SINGINT follows:

#include <math.h>

#include <stdio.h>

#include "singint.h"

int called_by_singint_cut = 0;

void integrand(const int* ndim, const double x[],

const int* numfun, double funvls[])

{

funvls[0] = singular_function(ndim, x);

if (called_by_singint_cut)

singint_cut_callback(ndim, x, numfun, funvls);

}

int main(int argc, char* argv[])

{

const double a[2] = { 0., 0. };

const double b[2] = { 1., 1. };

double result, abserr;

singint_cut_parameter = 100.;

called_by_singint_cut = 1;

singint_cut(2, a, b, &integrand, 0.01, 0., 10000000, &result, &abserr);

called_by_singint_cut = 0;

printf("singint_cut result: %.10g +- %.2g\n", result, abserr);

singint_rec(2, a, b, &integrand, 0.01, 0., 10000000, &result, &abserr);

printf("singint_rec result: %.10g +- %.2g\n", result, abserr);

return 0;

}

As shown, when using singint cut it is first necessary to set the external
global variable singint cut parameter to a suitable positive value. More-
over, additional post-processing is necessary after integrand evaluations, which
is facilitated by calling singint cut callback in the integrand routine. A
transparent code organization to that effect (involving the Boolean variable
called by singint cut) is also shown in the preceding example.

9

The argument maxpts has slightly different meanings for singint cut and
singint rec. For the former integrator it specifies the maximal number of
integrand evaluations used when integrating the bounded component, while for
the latter integrator it specifies the maximal number of integrand evaluations
in the Monte Carlo integration of any terminal subcell, i.e. a subcell where
further subdivision would not accelerate the integration. 6

As pointed out above, singint rec due to its recursive nature has comparably
small memory requirements. singint cut, however, implements a globally
optimising strategy, and increased precision hence requires the allocation of a
larger workspace. The size of the workspace for the integration of the bounded
and singular integrand components is

DCUHRE WKSPC SIZE · 4 bytes
︸ ︷︷ ︸

∫
bc(x) dx

+ MAXNRSEEDCELLS · 4 bytes + NRBINS2 · 1 byte
︸ ︷︷ ︸

∫
sc(x) dx

.

For a given integrand, the optimal value of the ratio MAXNRSEEDCELLS/NRBINS2

is approximately equal to the fraction of the integration volume where sc(x)
is nonvanishing. The shape of this area also suggests an adequate resolution
and thus a suitable value for NRBINS. More specifically, the default setting
of NRBINS = 100 and MAXNRSEEDCELLS = 10000 requires about 50kB. For
high precision calculations in connection with the application described in
Section 5.2 we used NRBINS = 5000 and MAXNRSEEDCELLS = 500000, which
required about 25MB. Without prior knowledge of the singularity structure
of the integrand, one would have set MAXNRSEEDCELLS to 50002, increasing the
required memory by about 100MB.

With respect to
∫

bc(x) dx, up to 107 integrand evaluations require
DCUHRE WKSPC SIZE = 615402, i.e. about 2.3MB, while DCUHRE WKSPC SIZE =
92307714 allocates 352MB and allows for up to 1.5 · 109 integrand evaluations
with a degree 13 rule. 7 The function singint ir checks can be used to obtain
the necessary workspace size for other maxpts settings.

To conclude this section, we mention a difficulty for non-global recursive al-
gorithms in general and the singint rec implementation in particular. Due
to the depth-first evaluation of integral contributions, no reliable estimate for
the total integral exists until the algorithm terminates. It is hence impossible
to translate a specified relative error to a desired absolute error while integrat-
ing. Since relative errors are not additive, it is also not possible to adapt the

6 Note that imposing such an upper limit in singint rec effects a runtime guar-
antee, but also invalidates the general statement in footnote 5.
7 Note that in this case maxpts is chosen to be very close to the maximum value of
a signed 4-byte integer, i.e. 231 − 1. Changing data types in DCUHRE would allow
to go beyond this implicit upper limit.

10

strategy employed to limit the absolute error. singint rec therefore accepts
only absolute error requests and requires that desired relerr be set to zero.

5 Numerical examples and practical application

5.1 Numerical examples

Three 2-dimensional integrands fi(x, y) in the unit hypercube U2 := [0, 1] ×
[0, 1] with corner and line singularities are used to construct example inte-
grands gi(x, y) in C2 := [−1, 1] × [−1, 1] with singularities at quasi-unknown
locations inside the integration region. 8

To be specific, the integrands fi(x, y) are given by

f1(x, y) =
1√

x2 + y2 5
√

x 3
√

y ((x − 0.5)2 + (y − 0.5)2 + 0.01)
≈ 32.640 , (3)

f2(x, y) =
ln(x + y) ln(x) ln(y)e2x+y

9
√

x + y 5
√

x 7
√

y
≈ −4.5849 , (4)

f3(x, y) =
(ln(x))2ex+y cos(20x)

9
√

x(3
√

y)2
≈ 4.1960 . (5)

The integrands gi(x, y) are then defined by

gi(x, y) =







fi(x, y) if (x, y) ∈ U2

fi(−x, y) if (x, y) ∈ [−1, 0] × [0, 1]

fi(x,−y) if (x, y) ∈ [0, 1] × [−1, 0]

fi(−x,−y) if (x, y) ∈ [−1, 0] × [−1, 0]

(6)

with i = 1, 2, 3 .

Evidently,

∫

C2

gi(x, y) dxdy = 4
∫

U2

fi(x, y) dxdy , i = 1, 2, 3 . (7)

8 These integrands gi(x, y) can thus not be integrated with the non-automatic,
deterministic algorithms of Ref. [3].

11

The SINGINT test program output displayed in App. A shows that the global
algorithm implemented in singint cut, as well as the recursive algorithm
implemented in singint rec can be used to efficiently integrate the example
integrands gi(x, y). It also confirms that results obtained with singint cut

are indeed independent of the cut parameter. The test program further demon-
strates that the integrands fi(x, y) as well as a number of trivial, bounded test
integrands are also computed accurately. 9

5.2 Practical application

SINGINT was developed to facilitate a novel numerical approach to the calcu-
lation of multileg 1-loop amplitudes in theoretical particle physics [7]. These
amplitudes are important ingredients for the computation of higher-order cor-
rections to multi-particle cross sections. The procedure involves the evaluation
of 1- and 2-dimensional integrals that contain integrable singularities of loga-
rithmic and square-root type. The number and location of these singularities
is fairly complex and depends strongly on the underlying physical configura-
tion as discussed in detail in Ref. [7]. A representative example is displayed in
Fig. 1.

Fig. 1. Two functions f1(x) and f2(x) that illustrate the structure of the 1- and
2-dimensional integrands that are evaluated in the computation of multi-particle
scattering amplitudes [7]. The peaks correspond to integrable square-root and log-
arithmic singularities. The structure of the 2-dimensional integrals is obtained by
“layering” (with nontrivial offset) 1-dimensional cross sections of the type shown.

The ultimate objective is to be able to reliably compute these amplitudes for
a multitude of physical configurations in time frames of 5 to 50 seconds with
1% relative error or better. Initial tests with pure Monte Carlo methods [8]

9 These integrands can be integrated more efficiently by other means [3,6].

12

turned out to be 1 to 4 orders of magnitude too slow depending on the phys-
ical configuration. However, with the “mixed” algorithms described above we
were able to achieve the desired runtimes. Generally, singint cut performed
better than singint rec for the particular type of integrand considered here.
We experimented with cut parameter values from 500 to 50000 and found the
optimal window to range from about 5000 to 10000. When applying the re-
cursive evaluation of subcells implemented in singint rec we observed that
neither the integration rule technique nor the Monte Carlo method dominated,
which confirms the advantage of a mixed strategy in the case at hand. To fur-
ther test the correctness of our implementation, we compared results obtained
for special cases with corresponding results found in the literature. SINGINT
also passed these application-related tests.

6 Conclusions

We introduced two efficient automatic procedures that facilitate the adaptive
numerical integration of low-dimensional singular integrands. We showed how
the combined use of integration rules and Monte Carlo sampling and the power
of recursion enable new runtime and memory optimisations. An application
in theoretical particle physics was discussed that demonstrates the practical
value of our approach. To allow others to apply the algorithms, we described
a C implementation with test examples and explained its use.

With the described physics application in mind, we formulated and imple-
mented the global algorithm of Section 2 specifically for 2-dimensional inte-
grals. However, its generalisation to more than two dimensions is straightfor-
ward. There are in fact applications in perturbative field theory, where higher-
dimensional integrands similar to those of Section 5.2 need to be calculated
numerically. We plan to investigate such cases in the future.

Acknowledgements

We would like to thank T. Binoth, A. Genz, B. Lautrup and J. Lyness for
useful discussions.

References

[1] R. Piessens et al., QUADPACK, Springer Verlag, 1983.

13

[2] W.H. Press et al., Numerical Recipes, 2nd ed., Cambridge University Press,
1992.

[3] T.O. Espelid and A. Genz, Numerical Algorithms 8 (1994) 201 and references
therein; K. Singstad and T.O. Espelid, J. Comp. Appl. Math. 112 (1999) 291;
J.N. Lyness, Math. Comp. 30 (1976) 1.

[4] F. James, J. Hoogland and R. Kleiss, Comp. Phys. Comm. 99 (1997) 180.

[5] P. Bratley, B.L. Fox and H. Niederreiter, ACM Trans. Model. Comp. Sim. 2
(1992) 195.

[6] J. Berntsen, T.O. Espelid and A. Genz, ACM Trans. Math. Softw. 17 (1991)
437; J. Berntsen, T.O. Espelid and A. Genz, ACM Trans. Math. Softw. 17
(1991) 452.

[7] T. Binoth, G. Heinrich and N. Kauer, preprint Edinburgh 2002/16 (2002)
[arXiv:hep-ph/0210023].

[8] G.P. Lepage, J. Comput. Phys. 27 (1978) 192; G.P. Lepage, preprint CLNS-
80/447 (1980).

A Output of test program

singint_ir, simple1, unit h.c.:

1 +- 1.4e-14 (1.4e-14)

singint_mc, simple1, unit h.c.:

1 +- 0 (0)

singint_rec, simple1, unit h.c.:

1 +- 0 (0)

singint_cut, simple1, unit h.c., cut = 1.5:

1 +- 1.4e-14 (1.4e-14)

singint_cut, simple1, unit h.c., cut = 0.5:

1 +- 6.8e-15 (6.8e-15)

singint_ir, simple1, non-unit h.c.:

19.2 +- 2.6e-13 (1.4e-14)

singint_mc, simple1, non-unit h.c.:

19.2 +- 0 (0)

singint_rec, simple1, non-unit h.c.:

19.2 +- 0 (0)

singint_cut, simple1, non-unit h.c., cut = 1.5:

19.2 +- 2.6e-13 (1.4e-14)

singint_cut, simple1, non-unit h.c., cut = 0.5:

19.2 +- 1.3e-13 (6.8e-15)

singint_ir, simple2, non-unit h.c.:

26.88 +- 5.9e-14 (2.2e-15)

singint_mc, simple2, non-unit h.c.:

14

http://arxiv.org/abs/hep-ph/0210023

26.88006626 +- 0.2 (0.0074)

singint_rec, simple2, non-unit h.c.:

26.88 +- 5.9e-14 (2.2e-15)

singint_cut, simple2, non-unit h.c., cut = 7.0:

26.88 +- 5.9e-14 (2.2e-15)

singint_cut, simple2, non-unit h.c., cut = 1.0:

26.88387169 +- 0.19 (0.0069)

singint_cut, singcomp1, [-1, 1]^2, cut = 50000:

129.2232525 +- 1.4 (0.011)

singint_cut, singcomp1, [-1, 1]^2, cut = 10000:

129.7198049 +- 1.4 (0.011)

singint_cut, singcomp1, [-1, 1]^2, cut = 2000:

130.1922621 +- 1.3 (0.01)

singint_cut, singcomp2, [-1, 1]^2, cut = 50:

-18.32923723 +- 0.19 (0.01)

singint_cut, singcomp2, [-1, 1]^2, cut = 10:

-18.33036408 +- 0.18 (0.0099)

singint_cut, singcomp2, [-1, 1]^2, cut = 2:

-18.3208958 +- 0.16 (0.0088)

singint_cut, singcomp3, [-1, 1]^2, cut = 50000:

16.5502603 +- 0.17 (0.01)

singint_cut, singcomp3, [-1, 1]^2, cut = 10000:

16.72847529 +- 0.17 (0.01)

singint_cut, singcomp3, [-1, 1]^2, cut = 2000:

16.79531051 +- 0.17 (0.01)

singint_rec, singcomp1, [-1, 1]^2:

129.9953115 +- 1.3 (0.01)

singint_rec, singcomp2, [-1, 1]^2:

-18.33534209 +- 0.18 (0.0098)

singint_rec, singcomp3, [-1, 1]^2:

16.7794245 +- 0.17 (0.01)

15

