1,142 research outputs found

    Characterization of the Crab Pulsar's Timing Noise

    Full text link
    We present a power spectral analysis of the Crab pulsar's timing noise, mainly using radio measurements from Jodrell Bank taken over the period 1982-1989. The power spectral analysis is complicated by nonuniform data sampling and the presence of a steep red power spectrum that can distort power spectra measurement by causing severe power ``leakage''. We develop a simple windowing method for computing red noise power spectra of uniformly sampled data sets and test it on Monte Carlo generated sample realizations of red power-law noise. We generalize time-domain methods of generating power-law red noise with even integer spectral indices to the case of noninteger spectral indices. The Jodrell Bank pulse phase residuals are dense and smooth enough that an interpolation onto a uniform time series is possible. A windowed power spectrum is computed revealing a periodic or nearly periodic component with a period of about 568 days and a 1/f^3 power-law noise component with a noise strength of 1.24 +/- 0.067 10^{-16} cycles^2/sec^2 over the analysis frequency range 0.003 - 0.1 cycles/day. This result deviates from past analyses which characterized the pulse phase timing residuals as either 1/f^4 power-law noise or a quasiperiodic process. The analysis was checked using the Deeter polynomial method of power spectrum estimation that was developed for the case of nonuniform sampling, but has lower spectral resolution. The timing noise is consistent with a torque noise spectrum rising with analysis frequency as f implying blue torque noise, a result not predicted by current models of pulsar timing noise. If the periodic or nearly periodic component is due to a binary companion, we find a companion mass > 3.2 Earth masses.Comment: 53 pages, 9 figures, submitted to MNRAS, abstract condense

    The glitch activity of neutron stars

    Full text link
    We present a statistical study of the glitch population and the behaviour of the glitch activity across the known population of neutron stars. An unbiased glitch database was put together based on systematic searches of radio timing data of 898 rotation-powered pulsars obtained with the Jodrell Bank and Parkes observatories. Glitches identified in similar searches of 5 magnetars were also included. The database contains 384 glitches found in the rotation of 141 of these neutron stars. We confirm that the glitch size distribution is at least bimodal, with one sharp peak at approximately 20 μ Hz20\, \rm{\mu\,Hz}, which we call large glitches, and a broader distribution of smaller glitches. We also explored how the glitch activity ν˙g\dot{\nu}_{\rm{g}}, defined as the mean frequency increment per unit of time due to glitches, correlates with the spin frequency ν\nu, spin-down rate ∣ν˙∣|\dot{\nu}|, and various combinations of these, such as energy loss rate, magnetic field, and spin-down age. It is found that the activity is insensitive to the magnetic field and that it correlates strongly with the energy loss rate, though magnetars deviate from the trend defined by the rotation-powered pulsars. However, we find that a constant ratio ν˙g/∣ν˙∣=0.010±0.001\dot\nu_{\rm{g}}/|\dot\nu| = 0.010 \pm 0.001 is consistent with the behaviour of all rotation-powered pulsars and magnetars. This relation is dominated by large glitches, which occur at a rate directly proportional to ∣ν˙∣|\dot{\nu}|. The only exception are the rotation-powered pulsars with the highest values of ∣ν˙∣|\dot{\nu}|, such as the Crab pulsar and PSR B0540−-69, which exhibit a much smaller glitch activity, intrinsically different from each other and from the rest of the population. The activity due to small glitches also shows an increasing trend with ∣ν˙∣|\dot\nu|, but this relation is biased by selection effects.Comment: Accepted for publication in A&

    Unusual glitch activity in the RRAT J1819-1458: an exhausted magnetar?

    Get PDF
    We present an analysis of regular timing observations of the high-magnetic-field Rotating Radio Transient (RRAT) J1819−-1458 obtained using the 64-m Parkes and 76-m Lovell radio telescopes over the past five years. During this time, the RRAT has suffered two significant glitches with fractional frequency changes of 0.6×10−60.6\times10^{-6} and 0.1×10−60.1\times10^{-6}. Glitches of this magnitude are a phenomenon displayed by both radio pulsars and magnetars. However, the behaviour of J1819−-1458 following these glitches is quite different to that which follows glitches in other neutron stars, since the glitch activity resulted in a significant long-term net decrease in the slow-down rate. If such glitches occur every 30 years, the spin-down rate, and by inference the magnetic dipole moment, will drop to zero on a timescale of a few thousand years. There are also significant increases in the rate of pulse detection and in the radio pulse energy immediately following the glitches.Comment: accepted for publication in MNRAS, 7 pages, 7 figures, 1 tabl

    Long-term Observations of Three Nulling Pulsars

    Full text link
    We present an analysis of approximately 200 hours of observations of the pulsars J1634−-5107, J1717−-4054 and J1853++0505, taken over the course of 14.7 yr. We show that all of these objects exhibit long term nulls and radio-emitting phases (i.e. minutes to many hours), as well as considerable nulling fractions (NFs) in the range ∼67 %−90 %\sim67\,\% - 90\,\%. PSR J1717−-4054 is also found to exhibit short timescale nulls (1−40 P1 - 40~P) and burst phases (≲200 P\lesssim 200~P) during its radio-emitting phases. This behaviour acts to modulate the NF, and therefore the detection rate of the source, over timescales of minutes. Furthermore, PSR J1853++0505 is shown to exhibit a weak emission state, in addition to its strong and null states, after sufficient pulse integration. This further indicates that nulls may often only represent transitions to weaker emission states which are below the sensitivity thresholds of particular observing systems. In addition, we detected a peak-to-peak variation of 33±1 %33\pm1\,\% in the spin-down rate of PSR J1717−-4054, over timescales of hundreds of days. However, no long-term correlation with emission variation was found.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    Neutron star magnetic field evolution, crust movement and glitches

    Get PDF
    Spinning superfluid neutrons in the core of a neutron star interact strongly with co-existing superconducting protons. One consequence is that the outward(inward) motion of core superfluid neutron vortices during spin-down(up) of a neutron star may alter the core's magnetic field. Such core field changes are expected to result in movements of the stellar crust and changes in the star's surface magnetic field which reflect those in the core below. Observed magnitudes and evolution of the spin-down indices of canonical pulsars are understood as a consequence of such surface field changes. If the growing crustal strains caused by the changing core magnetic field configuration in canonical spinning-down pulsars are relaxed by large scale crust-cracking events, special properties are predicted for the resulting changes in spin-period. These agree with various glitch observations, including glitch activity, permanent shifts in spin-down rates after glitches in young pulsars, the intervals between glitches, families of glitches with different magnitudes in the same pulsar, the sharp drop in glitch intervals and magnitudes as pulsar spin-periods approach 0.7s, and the general absence of glitching beyond this period.Comment: LaTex, 28 pages, 8 figs, accepted for publication in Ap

    Proper-Motion Measurements with the VLA. II. Observations of Twenty-eight Pulsars

    Full text link
    Using the Very Large Array, we have measured the proper motions of twenty-eight radio pulsars. On average, the pulsars studied are fainter and more distant than those studied in earlier work, reducing the selection biases inherent in surveys restricted to the Solar neighborhood. The typical measurement precision achieved is a few milliarcseconds per year, corresponding to a few tens of kilometers per second for a pulsar a kiloparsec away. While our results compare well with higher-precision measurements done using very-long baseline interferometry, we find that several earlier proper motion surveys appear to have reported overly optimistic measurement uncertainties, most likely because of a failure to fully account for ionospheric effects. We discuss difficulties inherent in estimating pulsar velocities from proper motions given poorly constrained pulsar distances. Our observations favor a distribution with 20% of pulsars in a low velocity component (sigma_1D = 99 km/s) and 80% in a high velocity component (sigma_1D = 294 km/s). Furthermore, our sample is consistent with a scale height of pulsar birthplaces comparable to the scale height of the massive stars that are their presumed progenitors. No evidence is found in our data for a significant population of young pulsars born far from the plane. We find that estimates of pulsar ages based on kinematics agree well with the canonical spin-down age estimate, but agreement is improved if braking indexes are drawn from a Gaussian distribution centered at n=3 with width 0.8.Comment: 20 pages. Accepted for publication in the Astronomical Journa

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Discovery of two pulsars towards the Galactic Centre

    Get PDF
    We report the discovery of two highly dispersed pulsars in the direction of the Galactic Centre made during a survey at 3.1 GHz with the Parkes radio telescope. Both PSRs J1745-2912 and J1746-2856 have an angular separation from the Galactic Centre of less than 0.3 degrees and dispersion measures in excess of 1100 cm-3pc, placing them in the top 10 pulsars when ranked on this value. The frequency dependence of the scatter-broadening in PSR J1746-2856 is much shallower than expected from simple theory. We believe it likely that the pulsars are located between 150 and 500 pc from the Galactic Centre on the near side, and are part of an excess population of neutron stars associated with the Centre itself. A second survey made at 8.4 GHz did not detect any pulsars. This implies either that there are not many bright, long-period pulsars at the Galactic Centre or that the scattering is more severe at high frequencies than current models would suggest.Comment: Submitted to MNRAS Letter
    • …
    corecore