196 research outputs found

    MS 2053.7-0449: Confirmation of a bimodal mass distribution from strong gravitational lensing

    Full text link
    We present the first strong lensing study of the mass distribution in the cluster MS 2053-04 based on HST archive data. This massive, X-ray luminous cluster has a redshift z=0.583, and it is composed of two structures that are gravitationally bound to each other. The cluster has one multiply imaged system constituted by a double gravitational arc. We have performed a parametric strong lensing mass reconstruction using NFW density profiles to model the cluster potential. We also included perturbations from 23 galaxies, modeled like elliptical singular isothermal sphere, that are approximately within 1'x1' around the cluster center. These galaxies were constrained in both the geometric and dynamical parameters with observational data. Our analysis predicts a third image which is slightly demagnified. We found a candidate for this counter-image near the expected position and with the same F702W-F814W colors as the gravitational arcs in the cluster. The results from the strong lensing model shows the complex structure in this cluster, the asymmetry and the elongation in the mass distribution, and are consistent with previous spectrophotometric results that indicate that the cluster has a bimodal mass distribution. Finally, the derived mass profile was used to estimate the mass within the arcs and for comparison with X-ray estimates.Comment: To be published in ApJ (accepted

    High-Resolution Mid-Infrared Morphology of Cygnus A

    Get PDF
    We present subarcsecond resolution mid-infrared images at 10.8 and 18.2 microns of Cygnus A. These images were obtained with the University of Florida mid-IR camera/spectrometer OSCIR at the Keck II 10-m telescope. Our data show extended mid-IR emission primarily to the east of the nucleus with a possible western extension detected after image deconvolution. This extended emission is closely aligned with the bi-conical structure observed at optical and near-IR wavelengths by the HST. This emission is consistent with dust heated from the central engine of Cygnus A. We also marginally detect large-scale low level emission extending > 1.5 kpc from the nucleus which may be caused by in-situ star formation, line emission, and/or PAH contamination within the bandpass of our wide N-band filter.Comment: 20 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Arc Statistics in Clusters: Galaxy Contribution

    Get PDF
    The frequency with which background galaxies appear as long arcs as a result of gravitational lensing by foreground clusters of galaxies has recently been found to be a very sensitive probe of cosmological models by Bartelmann et al. (1998). They have found that such arcs would be expected far less frequently than observed (by an order of magnitude) in the currently favored model for the universe, with a large cosmological constant ΩΛ0.7\Omega_\Lambda \sim 0.7. Here we analyze whether including the effect of cluster galaxies on the likelihood of clusters to generate long-arc images of background galaxies can change the statistics. Taking into account a variety of constraints on the properties of cluster galaxies, we find that there are not enough sufficiently massive galaxies in a cluster for them to significantly enhance the cross section of clusters to generate long arcs. We find that cluster galaxies typically enhance the cross section by only 15\lesssim 15%.Comment: 19 pages, 1 figure, uses aasms4.sty, submitted to Ap

    Remote Predictive Mapping 3. Optical Remote Sensing – A Review for Remote Predictive Geological Mapping in Northern Canada

    Get PDF
    Optical remotely sensed data have broad application for geological mapping in Canada’s North. Diverse remote sensors and digital image processing techniques have specific mapping functions, as demonstrated by numerous examples and associated interpretations. Moderate resolution optical sensors are useful for discriminating rock types, whereas sensors that offer increased spectral resolution (i.e. hyperspectral sensors) allow the geologist to identify certain rock types (mainly different types of carbonates, Fe-bearing rocks, sulphates and hydroxyl-(clay-) bearing rocks) as opposed to merely discriminating between them. Increased spatial resolution and the ability to visualize the earth’s surface in stereo are now offered by a host of optical sensors. However, the usefulness of optical remote sensing for geological mapping is highly dependent on the geologic, surficial and biophysical environment, and bedrock predictive mapping is most successful in areas not obscured by thick drift and vegetation/lichen cover, which is typical of environments proximal to coasts. In general, predictive mapping of surficial materials has fewer restrictions. Optical imagery can be enhanced in a variety of ways and fused with other geo-science datasets to produce imagery that can be visually interpreted in a GIS environment. Computer processing techniques are useful for undertaking more quantitative analyses of imagery for mapping bedrock, surficial materials and geomorphic or glacial features. SOMMAIRE Les données recueillies par télédétection optique offrent beaucoup de possibilités pour la cartographie géologique des régions nordiques canadiennes. La diversité des télécapteurs et des techniques de traitement numérique des données permet la définition de fonctions de cartographie spécifique, tel que l’illustre de nombreux exemples et interprétations associées. Des capteurs optiques de moyenne résolution sont utiles pour différencier les types de roche, alors que les capteurs à plus fines résolutions (les capteurs hyperspectraux, par ex.) permettent au géologue de subdiviser certains types de roches (principalement différents types de carbonates, roches ferrugineuses, roches à sulfates et à hydroxyle (argile). Une meilleure résolution spatiale et la fonction de vision stéréoscopique sont maintenant offertes sur une gamme de capteurs optiques. Cela dit, l’utilité de la télédétection optique pour la cartographie géologique est fortement tributaire des conditions de la géologie de surface et de son environnement biophysique, le potentiel prédictif de la télécartographie étant maximal pour les régions exemptes d’une couverture épaisse de dépôts glaciaires ou d’une couverture végétale/lichen caractéristique typique des environnements longeant les côtes. Divers procédés permettent de rehausser l’imagerie optique et de réaliser des fusions avec d’autres jeux de données géoscientifiques et de produire une imagerie visuellement inter-prétable en environnement de SIG. Les techniques de traitement de données par ordinateur sont utiles pour d’autres types d’analyse quantitative d’imagerie pour la cartographie des matériaux de couverture du socle et pour répertorier des formes glaciaires et géomorphologiques

    Searching (the) FIRST radio arcs near ACO clusters

    Get PDF
    Gravitational lensing (GL) of distant radio sources by galaxy clusters should produce radio arc(let)s. We extracted radio sources from the FIRST survey near Abell cluster cores and found their radio position angles to be uniformly distributed with respect to the cluster centres. This result holds even when we restrict the sample to the richest or most centrally condensed clusters, and to sources with high S/N and large axial ratio. Our failure to detect GL with statistical methods may be due to poor cluster centre positions. We did not find convincing candidates for arcs either. Our result agrees with theoretical estimates predicting that surveys much deeper than FIRST are required to detect the effect. This is in apparent conflict with the detection of such an effect claimed by Bagchi & Kapahi (1995).Comment: 6 pages; 8 figures and 1 style file are included; to appear in Proc. "Observational Cosmology with the New Radio Surveys", eds. M. Bremer, N. Jackson & I. Perez-Fournon, Kluwer Acad. Pres

    Classification of image distortions in terms of Petrov types

    Get PDF
    An observer surrounded by sufficiently small spherical light sources at a fixed distance will see a pattern of elliptical images distributed over the sky, owing to the distortion effect (shearing effect) of the spacetime geometry upon light bundles. In lowest non-trivial order with respect to the distance, this pattern is completely determined by the conformal curvature tensor (Weyl tensor) at the observation event. In this paper we derive formulas that allow to calculate these distortion patterns in terms of the Newman-Penrose formalism. Then we represent the distortion patterns graphically for all Petrov types, and we discuss their dependence on the velocity of the observer.Comment: 22 pages, 8 eps-figures; revised version, parts of Introduction and Conclusions rewritte

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of 2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be \le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax

    The Ray Bundle method for calculating weak magnification by gravitational lenses

    Get PDF
    We present here an alternative method for calculating magnifications in gravitational lensing calculations -- the Ray Bundle method. We provide a detailed comparison between the distribution of magnifications obtained compared with analytic results and conventional ray-shooting methods. The Ray Bundle method provides high accuracy in the weak lensing limit, and is computationally much faster than (non-hierarchical) ray shooting methods to a comparable accuracy. The Ray Bundle method is a powerful and efficient technique with which to study gravitational lensing within realistic cosmological models, particularly in the weak lensing limit.Comment: 9 pages Latex, 8 figures, submitted to MNRA

    V4332 Sagittarii revisited

    Full text link
    The eruption of V4332 Sgr discovered in February 1994 shows striking similarities to that of V838 Mon started in January 2002. The nature of these eruptions is, however, enigmatic and unclear. We present new photometric and spectroscopic data on V4332 Sgr obtained in April-May 2003 at the SAAO. The obtained spectrum shows an unusual emission-line component superimposed on an early M-type stellar spectrum. The emission-line spectrum is of very low excitation and is dominated by lines from neutral elemets (NaI, FeI, CaI) and molecular bands (TiO, ScO, AlO). We also analyse all the observational data, mainly photometric measurements, available for V4332 Sgr. This allows us to follow the evolution of the effective temperature, radius and luminosity of the object since February 1994 till 2003. We show that the observed decline of V4332 Sgr can be accounted for by a gravitational contraction of an inflated stellar envelope. The combined optical and infrared photometry in 2003 shows that apart from the M-type stellar component there is a strong infrared excess in the KLM bands. This excess was absent in the 2MASS measurements done in 1998 but was probably starting to appear in K in 1999 when the object was observed in the DENIS survey. We interpret the results in terms of a stellar merger scenario proposed by Soker & Tylenda. The infrared excess is likely to be due to a disc-like structure which is either of protostellar nature or has been produced during the 1994 eruption and stores angular momentum from the merger event.Comment: 11 pages, 5 figures, accepted in Astronomy & Astrophysic
    corecore