399 research outputs found

    Illiquid Capital: Are Conservation Easement Payments Reinvested in Farms?

    Get PDF
    Agricultural conservation easements have positive externalities but few studies examine the supply-side. This paper explores whether easements may also overcome a credit-market failure, as banks may not be lending based on the full developed value of land. Original survey data test our research hypotheses and show profitable owners and nonoperators to be using easement payments to extract capital from their land by using the preservation programs as a bank. The results also show that the unprofitable owners and operators are reinvesting in their agricultural enterprises. Both results are consistent with an underlying credit-market failure, and the latter suggests that easements may provide indirect efficiency enhancement. The results suggest an integration of policies on agricultural finance and land preservation might lead to improved efficiency

    Three-Dimensional Simulations of Tearing and Intermittency in Coronal Jets

    Get PDF
    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work, we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-field region in the center of the current layer are associated with "blobs" of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined

    Vastus lateralis/vastus medialis cross-sectional area ratio impacts presence and degree of knee joint abnormalities and cartilage T2 determined with 3T MRI – an analysis from the incidence cohort of the Osteoarthritis Initiative

    Get PDF
    SummaryObjectiveTo study the role of vastus lateralis/vastus medialis cross-sectional area CSA ratio (VL/VM CSA ratio) in preclinical knee osteoarthritis (OA) using magnetic resonance imaging (MRI)-based cartilage T2 mapping technique and morphological analysis at 3.0T in non-symptomatic, middle-aged subjects.Material and methods174 non-symptomatic individuals aged 45–55 years with OA risk factors were selected from the Osteoarthritis Initiative (OAI) incidence cohort. OA-related knee abnormalities were analyzed using the whole-organ magnetic resonance imaging score (WORMS). Knee cartilage T2 maps were generated using sagittal 2D multi-echo spin-echo images of the right knee. CSA of thigh muscles was measured using axial T1W images of the right mid thigh. Spline-based segmentation of cartilage and muscles was performed on a SUN/SPARC workstation. Muscle measurements were normalized to body size using body surface area (BSA). Statistical significance was determined using Student’s t-test, Pearson correlation test, and multiple regression models. To correct for multiple testing, Bonferroni adjustments were applied across all tests within each of the primary results tables (Tables III–VII).ResultsHigher T2 values were associated with increased prevalence and severity of cartilage degeneration. In our study, male and female subjects with higher VL/VM CSA ratio demonstrated significantly lower mean cartilage T2 values (all compartments combined) (mean 44.10 vs 45.17, P=0.0017), and significantly lower WORMS scores (mean 14.12 vs 18.68, P=0.0316). Regression analyses of combined mean cartilage T2 using VL/VM CSA ratio as a continuous predictor showed a significant curvilinear relationship between these two variables (P=0.0082).ConclusionOur results suggested that higher VL/VM CSA ratio is associated with lower T2 values and decreased presence and severity of OA-related morphological changes. Additional studies will be needed to determine causality

    Nerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle.

    Get PDF
    Researchers have attempted to use gene- and cell-based therapies to restore dystrophin and alleviate the muscle weakness that results from Duchenne muscular dystrophy (DMD). Our research group has isolated populations of muscle-derived stem cells (MDSCs) from the postnatal skeletal muscle of mice. In comparison with satellite cells, MDSCs display an improved transplantation capacity in dystrophic mdx muscle that we attribute to their ability to undergo long-term proliferation, self-renewal, and multipotent differentiation, including differentiation toward endothelial and neuronal lineages. Here we tested whether the use of nerve growth factor (NGF) improves the transplantation efficiency of MDSCs. We used two methods of in vitro NGF stimulation: retroviral transduction of MDSCs with a CL-NGF vector and direct stimulation of MDSCs with NGF protein. Neither method of NGF treatment changed the marker profile or proliferation behavior of the MDSCs, but direct stimulation with NGF protein significantly reduced the in vitro differentiation ability of the cells. NGF stimulation also significantly enhanced the engraftment efficiency of MDSCs transplanted within the dystrophic muscle of mdx mice, resulting in the regeneration of numerous dystrophin-positive muscle fibers. These findings highlight the importance of NGF as a modulatory molecule, the study of which will broaden our understanding of its biologic role in the regeneration and repair of skeletal muscle by musclederived cells

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs

    Orientations of LASCO Halo CMEs and Their Connection to the Flux Rope Structure of Interplanetary CMEs

    Full text link
    Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in-situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad-Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME-MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near Earth environment

    Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere

    Full text link
    A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15-240Rsun), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi

    A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

    Full text link
    Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies ~ 10^4 times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89

    Deflection and Rotation of CMEs from Active Region 11158

    Full text link
    Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. We find good agreement between the ForeCAT results and the reconstructed CME positions and orientations. The CME deflections range in magnitude between 10 degrees and 30 degrees. All CMEs deflect to the north but we find variations in the direction of the longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with both clockwise and counterclockwise rotations occurring. Three of the CMEs begin with initial positions within 2 degrees of one another. These three CMEs all deflect primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, respectively differ by 20 degrees and 30 degrees. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, despite the active region facing near Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
    • …
    corecore