864 research outputs found

    Effect of rhPDGF-BB Delivery on Mediators of Periodontal Wound Repair

    Full text link
    Growth factors such as platelet-derived growth factor (PDGF) exert potent effects on wound healing including the regeneration of tooth-supporting structures. This investigation examined the effect of the local delivery of PDGF-BB when combined with reconstructive periodontal surgery on local wound fluid (WF) levels of PDGF-AB, vascular endothelial growth factor (VEGF), and bone collagen telopeptide (ICTP) in humans with advanced periodontitis. Sixteen patients exhibiting localized periodontal osseous defects were randomized to one of three groups (β-TCP carrier alone, β-TCP + 0.3 mg/mL of recombinant human PDGF-BB [rhPDGF-BB], or β-TCP + 1.0 mg/mL of rhPDGF-BB) and monitored for 6 months. WF was harvested and analyzed for PDGF-AB, VEGF, and ICTP WF levels. Teeth contralateral to the target lesions served as controls. Increased levels of VEGF in the WF was observed for all surgical treatment groups with the 1.0 mg/mL rhPDGF-BB group showing the most pronounced difference at 3 weeks in the AUC analysis versus control (p < 0.0001). PDGF-AB WF levels were increased for the carrier alone group compared to both rhPDGFBB groups. Low-dose rhPDGF-BB application elicited increases in ICTP at days 3–5 in the wound healing process, suggesting a promotion of bone turnover at early stages of the repair process (p < 0.02). These results demonstrate contrasting inducible expression patterns of PDGF-AB, VEGF, and ICTP during periodontal wound healing in humans.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63257/1/ten.2006.12.1441.pd

    Direct Nano-Imaging of Light-Matter Interactions in Nanoscale Excitonic Emitters

    Full text link
    Strong light-matter interactions in localized nano-emitters when placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of the localized nanoscale emitters on a flat Au substrate. We observe strong-coupling of the excitonic dipoles in quasi 2-dimensional CdSe/CdxZnS1-xS nanoplatelets with gap mode plasmons formed between the Au tip and substrate. We also observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the emitter on the substrate plane. We further report that both light confinement and the in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.Comment: manuscript + supporting informatio

    Synthesis and Structural Investigation of an \u27Oxazinoquinolinespirohexadienone\u27 That Only Exists as Its Long-Wavelength Ring-Opened Quinonimine Isomer

    Get PDF
    The spirocyclic oxazinoquinolinespirohexadienone (OSHD) photochromes are computationally predicted to be an attractive target as electron deficient analogues of the perimidinespirohexadienone (PSHD) photochromes, for eventual application as photochromic photooxidants. We have found the literature method for their preparation unsuitable and present an alternative synthesis. Unfortunately the product of this synthesis is the long wavelength (LW) ring-opened quinonimine isomer of the OSHD. We have found this isomer does not close to the spirocyclic short wavelength isomer (SW) upon prolonged standing in the dark, unlike other PSHD photochromes. The structure of this long wavelength isomer was found by NMR and X-ray crystallography to be exclusively the quinolinone (keto) tautomer, though experimental cyclic voltammetry supported by our computational methodology indicates that the quinolinol (enol) tautomer (not detected by other means) may be accessible through a fast equilibrium lying far toward the keto tautomer. Computations also support the relative stability order of keto LW over enol LW over SW

    Effect of rhPDGF-BB on bone turnover during periodontal repair

    Full text link
    Purpose : Growth factors such as platelet-derived growth factor (PDGF) exert potent effects on wound healing including the regeneration of periodontia. Pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP) is a well-known biomarker of bone turnover, and as such is a potential indicator of osseous metabolic activity. The objective of this study was to evaluate the release of the ICTP into the periodontal wound fluid (WF) following periodontal reconstructive surgery using local delivery of highly purified recombinant human PDGF (rhPDGF)-BB. Methods : Forty-seven human subjects at five treatment centres possessing chronic severe periodontal disease were monitored longitudinally for 24 weeks following PDGF regenerative surgical treatment. Severe periodontal osseous defects were divided into one of three groups and treated at the time of surgery with either: Β -tricalcium phosphate (TCP) osteoconductive scaffold alone (active control), Β -TCP+0.3 mg/ml of rhPDGF-BB, or Β -TCP+1.0 mg/ml of rhPDGF-BB. WF was harvested and analysed for local ICTP levels by radioimmunoassay. Statistical analysis was performed using analysis of variance and an area under the curve analysis (AUC). Results : The 0.3 and 1.0 mg/ml PDGF-BB treatment groups demonstrated increases in the amount of ICTP released locally for up to 6 weeks. There were statistically significant differences at the week 6 time point between Β -TCP carrier alone group versus 0.3 mg/ml PDGF-BB group ( p <0.05) and between Β -TCP alone versus the 1.0 mg/ml PDGF-BB-treated lesions ( p <0.03). The AUC analysis revealed no statistical differences amongst groups. Conclusion : This study corroborates the release of ICTP as a measure of active bone turnover following local delivery of PDGF-BB to periodontal osseous defects. The amount of ICTP released from the WF revealed an early increase for all treatment groups. Data from this study suggests that when PDGF-BB is delivered to promote periodontal tissue engineering of tooth-supporting osseous defects, there is a direct effect on ICTP released from the wound.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72239/1/j.1600-051X.2005.00870.x.pd

    Ultrastrong Light-Matter Coupling in 2D Metal-Chalcogenates

    Full text link
    Hybridization of excitons with photons to form hybrid quasiparticles, exciton-polaritons (EPs), has been widely investigated in a range of semiconductor material systems coupled to photonic cavities. Self-hybridization occurs when the semiconductor itself can serve as the photonic cavity medium resulting in strongly-coupled EPs with Rabi splitting energies > 200 meV at room temperatures which recently were observed in layered two-dimensional (2D) excitonic materials. Here, we report an extreme version of this phenomenon, an ultrastrong EP coupling, in a nascent, 2D excitonic system, the metal organic chalcogenate (MOCHA) compound named mithrene. The resulting self-hybridized EPs in mithrene crystals placed on Au substrates show Rabi Splitting in the ultrastrong coupling range (> 600 meV) due to the strong oscillator strength of the excitons concurrent with the large refractive indices of mithrene. We further show bright EP emission at room temperature as well as EP dispersions at low-temperatures. Importantly, we find lower EP emission linewidth narrowing to ~1 nm when mithrene crystals are placed in closed Fabry-Perot cavities. Our results suggest that MOCHA materials are ideal for polaritonics in the deep green-blue part of the spectrum where strong excitonic materials with large optical constants are notably scarce

    Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults

    Get PDF
    The basal ganglia play a central role in regulating the response selection abilities that are critical formental flexibility. In neocortical areas, higher cardiorespiratory fitness levels are associated with increased gray matter volume, and these volumetric differences mediate enhanced cognitive performance in a variety of tasks. Here we examine whether cardiorespiratory fitness correlates with the volume of the subcortical nuclei that make up the basal ganglia and whether this relationship predicts cognitive flexibility in older adults. Structural MRI was used to determine the volume of the basal ganglia nuclei in a group of older, neurologically healthy individuals (mean age 66 years, N = 179).Measures of cardiorespiratory fitness (VO2max), cognitive flexibility (task switching), and attentional control (flanker task) were also collected. Higher fitness levels were correlated with higher accuracy rates in the Task Switching paradigm. In addition, the volume of the caudate nucleus, putamen, and globus pallidus positively correlated with Task Switching accuracy.Nested regression modeling revealed that caudate nucleus volume was a significantmediator of the relationship between cardiorespiratory fitness, and task switching performance. These findings indicate that higher cardiorespiratory fitness predicts better cognitive flexibility in older adults through greater grey matter volume in the dorsal striatum

    Respiratory Syncytial Virus infection promotes necroptosis and HMGB1 release by airway epithelial cells

    Get PDF
    Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown. Objectives: To determine whether necroptosis contributes to RSV b r onchiolitis pathogenesis via HMGB1 (high mobility group box 1) release. Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice. Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGBI translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life. Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma

    Information Display System for Atypical Flight Phase

    Get PDF
    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions

    Get PDF
    We provide timing solutions for 45 radio pulsars discovered by the Robert C. Byrd Green Bank Telescope. These pulsars were found in the Green Bank North Celestial Cap pulsar survey, an all-GBT-sky survey being carried out at a frequency of 350 MHz. We include pulsar timing data from the Green Bank Telescope and Low Frequency Array. Our sample includes five fully recycled millisecond pulsars (MSPs, three of which are in a binary system), a new relativistic double neutron star system, an intermediate-mass binary pulsar, a mode-changing pulsar, a 138 ms pulsar with a very low magnetic field, and several nulling pulsars. We have measured two post-Keplerian parameters and thus the masses of both objects in the double neutron star system. We also report a tentative companion mass measurement via Shapiro delay in a binary MSP. Two of the MSPs can be timed with high precision and have been included in pulsar timing arrays being used to search for low-frequency gravitational waves, while a third MSP is a member of the black widow class of binaries. Proper motion is measurable in five pulsars, and we provide an estimate of their space velocity. We report on an optical counterpart to a new black widow system and provide constraints on the optical counterparts to other binary MSPs. We also present a preliminary analysis of nulling pulsars in our sample. These results demonstrate the scientific return of long timing campaigns on pulsars of all types
    corecore