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ABSTRACT 

The spirocyclic oxazinoquinolinespirohexadienone (OSHD) "photochromes" are computationally 

predicted to be an attractive target as electron deficient analogs of the perimidinespirohexadienone 

(PSHD) photochromes, for eventual application as photochromic photooxidants.  We have found the 

literature method for their preparation unsuitable, and present an alternative synthesis.  Unfortunately 

the product of this synthesis is the long wavelength (LW) ring-opened quinonimine isomer of the 

OSHD.  We have found this isomer does not close to the spirocyclic short wavelength isomer (SW) 

upon prolonged standing in the dark on, unlike other PSHD photochromes.  The structure of this long 

wavelength isomer was found by NMR and X-ray crystallography to be exclusively the quinolinone 

(keto) tautomer, though experimental cyclic voltammetry supported by our computational methodology 

indicates that the quinolinol (enol) tautomer (not detected by other means) may be accessible through a 

fast equilibrium lying far towards the keto tautomer.  Computations also support the relative stability 

order of keto LW over enol LW over SW. 
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Introduction 

Our group focuses on designing and employing photochromes of the 

perimidinespirohexadienone (PSHD) family as possible "switchable" photooxidants. The PSHD family 

of photochromes offers many properties suitable for gating photoinduced charge transfer (PICT) 

reactions via photochromic rearrangements as discussed in detail in an earlier manuscript.1 That 

manuscript focused on preparing analogs of the PSHDs in which the naphthalene moiety is replaced 

with a quinoline, resulting in the quinazolinespirohexadienones (QSHDs). These QSHDs are predicted 

to be more reducible than the parent PSHDs based on a computational method of predicting the ground-

state reduction potentials of organic compounds we have reported2,3 which we have also confirmed 

experimentally.4 Other promising analogs include the oxazinoquinolinespirohexadienones (OSHDs), 

where one of the bridging nitrogen atoms in the QSHDs is replaced with an oxygen atom. This oxygen, 

being a stronger inductive withdrawer and a weaker resonance donor than nitrogen, is predicted to make 

both the spirocyclic short-wavelength isomer (SW) and the open quinonimine long-wavelength isomer 

(LW) of the OSHDs even more reducible than the corresponding isomers of the QSHDs; this prediction 

is supported computationally (vide infra). 

The literature available on these compounds reports photochromic, thermochromic, and 

solvatochromic behavior.5 A synthetic procedure is also reported in which 4-chloro-2,8-

dimethylquinolin-5-amine 3a is coupled with 2,6-di-tert-butyl-1,4-benzoquinone (DBB) to yield the 

short-wavelength isomer (SW) of the corresponding OSHD 1a; the synthesis of precursor 3a is not 

reported, nor is this compound commercially available. Our attempts to couple a very similar compound 

(differing only in methyl substitution) with DBB by this procedure yielded a different product. We 

herein report an alternative synthesis of the OSHD LW 2b, which ultimately proved to exist solely as its 

long-wavelength quinonimine isomer (LW) expressing no characteristic photochromic behavior. 
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Results and Discussion 

Scheme 1.  

 

The synthesis of 1a reported in the literature was not attempted as the preparation of precursor 

3a is not reported.5  Instead, working from 3b, an intermediate we reported in our previous QSHD 

work,1 we attempted the identical procedure to couple with 2,6-di-tert-butyl-1,4-benzoquinone (DBB) 

without success.  The anticipated formation of 1b was not observed. Instead, the reaction yielded 4, in 

which the displacement of the chlorine atom did not occur (Scheme 2), and we were unable to hydrolyze 

4 to 1b/2b. 

Scheme 2.  
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These unsuccessful attempts at making 1b/2b forced us to consider a new synthetic route 

(Scheme 3). This new course of reactions was begun from another readily available intermediate 5 also 

reported in our QSHD synthesis,1 and was designed to allow DBB to serve solely as an electrophile, 

rather than as both nucleophile and electrophile. First, electrophilic nitration of 5 yielded 6. Palladium-

catalyzed hydrogenation followed to reduce the nitro group of 6 to its nucleophilic amino counterpart 

resulting in the formation of 7. Coupling with DBB to form the colored, LW isomer 2b was successful; 

however, the presence of this quinonimine LW isomer at dark equilibrium indicated the lack of its 

ability to undergo thermal bleaching to the desired SW isomer, 1b. This dilemma was further aggravated 

by the pair of tautomers possible for the LW isomer, 2b and 2'b (as well as for intermediates 5-7). 
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Scheme 3. 
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The lack of photochromism observed between 2b/2'b and 1b was initially hypothesized to have 

been the result of nitration occurring in a location other than the C5 position of quinoline 5/5'. This 

possibility was tested by hydrolyzing 8 and 3b (both intermediates from our QSHD synthesis) under 

acidic conditions.  These hydrolyses conclusively yielded 6/6' and 7/7', respectively, thus confirming 

the desired regioselectivity of the nitration reaction. Inspired by this success, we attempted the 

analogous hydrolysis of 4 in an attempt to form 2b/2'b, but all conditions that were able to hydrolyze 

the chlorine atom also hydrolyzed the imine thus decomposing 4 to give 7/7'. 

Scheme 4. 
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Figure 1. NMR chemical shifts and atom labeling. 
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Structural investigation of the isolated 2b/2'b to determine in which tautomer this compound 

exists was begun with NMR analysis. Comparisons of experimental 1H and 13C chemical shifts with 

those predicted by ChemDraw's ChemNMR predictor were made. Predictions of the chemical shifts for 

1b are labeled on the structure in Figure 1—1H shifts in blue and 13C shifts in red—while atom labels on 

2b/2'b correspond to the lettering used in Tables 1 and 2.  Note that the predicted values do not reflect 

spatial differences between atoms in otherwise equivalent chemical environments. 13C NMR 

experimental chemical shifts do not conclusively point to one tautomer or the other with respect to 

predicted values, however, the experimentally observed chemical shifts of 187.2 ppm and 177.3 ppm are 

consistent with the presence of two carbonyl groups (i.e., 2'b). Upfield experimental 1H NMR chemical 

shifts agree well with predictions for both tautomers; however, in the aromatic region of the spectrum 

experimental results reflect values slightly closer to the chemical shifts predicted for 2'b, though these 

results would alone be far from conclusive. Additionally, the presence of a 1H NMR signal at 10.83 ppm 

would be more anomalous for the phenolic proton in structure 2b predicted at 5.35 ppm, than for the 

vinylagous amide proton of 2'b for which ChemNMR was unable to provide an accurate prediction. 
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Table 1. 13C NMR predicted and experimental chemical shifts. 

Predicted (ppm) 

Carbona for 2b for 2'b 
Experimenta

l (ppm) 

a 29.3 29.3 29.0 

b 34.9 34.9 34.8 

c 148.9 148.9 151.2 

d 186.0 186.0 187.2 

e 148.9 148.9 151.4 

f 34.9 34.9 34.9 

g 29.3 29.3 29.2 

h 141.8 141.8 138.1 

i 164.6 164.6 156.3 

j 141.8 141.8 138.3 

k 138.4 141.6 145.0 

l 130.0 120.9 117.8 

m 19.0 18.6 17.3 

n 133.6 138.8 134.2 

o 134.4 127.9 121.0 

p 17.2 18.0 17.0 

q 155.1 143.3 134.4 

r 150.8 139.5 121.6 

s 108.7 108.8 110.2 

t 165.9 182.1 177.3 

u 111.9 116.6 116.1 

aAs labeled in Figure 1.  
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Table 2. 1H NMR predicted and experimental chemical shifts. 

Predicted 

Protona for 2b for 2'b 
Experimenta

l (ppm) 

a 1.35 1.35 1.03 

g 1.35 1.35 1.32 

h 6.47 6.47 6.33 

j 6.47 6.47 7.11 

m 2.34 2.34 2.42 

n 7.81 7.13 7.38 

p 1.92 2.12 1.88 

r 9.01 6.98 7.68 

s 7.48 7.15 5.85 

X-Hb 5.35 4.00 10.83 

aAs labeled in Figure 1. bX = O (2b), N (2'b) 

 

In conjunction with the previous NMR results, a deuterium exchange experiment was carried out 

on the product sample to verify that the X-H proton was responsible for the signal at 10.83 ppm; the 

addition of D2O was indeed followed by the fading of this signal. Although this result alone does not 

indicate the presence of one tautomer over the other, the concurrent change in multiplicity of the signal 

at 7.68 ppm from a triplet to a doublet (Figure 2) is very telling. This change in multiplicity clearly 

indicates that the X-H proton, itself appearing as a fine doublet in our best resolved spectra, interacts 

with the adjacent proton r—consistent only with the constitution of the LW isomer as the quinolinone 

keto tautomer 2'b. 
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Figure 2. Deuterium exchange experiment: (a) 1H NMR of 2'b in DMSO-d6, (b) the same sample upon 

addition of 1 drop of D2O. 

 

To confirm the solution NMR results, crystals were grown for an X-ray diffraction study to 

confirm the solid-state structural identity of 2b/2'b. The diffraction pattern was solved to definitively 

identify the structure as quinolinone keto tautomer 2'b. It was possible to actually locate and refine the 

position of the hydrogen atom on the quinoline nitrogen atom (and the lack thereof on the oxygen atom) 

from an electron density map. Furthermore, bond lengths that are consistent with the quinolinone (keto) 

structure are observed.  Together these x-ray data provide very strong evidence that the obtained LW 

isomer exists solely as 2'b in the solid state, as well as in solution. 

5.86.06.26.46.66.87.07.27.47.67.8 ppm

(a)  

(b)  

10.811.0
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Figure 3. Crystal structure of 2'b displayed with thermal ellipsoids at 50% probability. 

Due to a similar pair of tautomers possible in synthetic intermediates 5/5'-7/7', analogous NMR 

experiments were carried out on these compounds. In each case, the presence of a 13C NMR signal 

appearing at ≥173.95 ppm is consistent with the presence of the carbonyl carbons required by keto 

structures 5', 6', and 7'. Furthermore, deuterium exchange experiments with D2O that were carried out 

on these intermediates produced exactly analogous results as that for 2'b; that is, both the disappearance 

of the furthest downfield signal and the change in multiplicity of the signal for the proton adjacent to the 

quinoline nitrogen from a triplet to a doublet. In addition to NMR experiments, crystals were grown of 

5/5' for an X-ray diffraction study. The results obtained from this investigation revealed the same 

constitutional pattern as 2'b in both the presence of a hydrogen atom on the quinoline nitrogen and bond 
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lengths consistent with the quinolinone tautomer 5'. Crystals suitable for X-ray diffraction were unable 

to be grown from 6/6' and 7/7' due to solubility issues. 

Table 3. B3LYP energies and tautomer equilibria. 

Cmpd 

Energy of 
Quinolinol, 
X (Eh) 

Energy of 
Quinolinone, 
X' (Eh) 

ΔE       
(Eh) 

ΔE 
(kcal/mol

) Calculated K 
Calculated Percent 
Quinolinone, X' 

2a/2'a -1231.03019 -1231.03178 -0.00160 -1.00 5.42 84.4 

2b/2'b -1231.02281 -1231.02543 -0.00262 -1.64 16.1 94.1 

5/5' -555.95590 -555.96482 -0.00892 -5.60 1.26×104 99.9921 

6/6' -760.51040 -760.51967 -0.00928 -5.82 1.85×104 99.9946 

7/7' -611.33087 -611.34581 -0.01494 -9.37 7.45×106 99.99999 

 

Finally, the experimental results regarding the tautomers observed were confirmed 

computationally. Energies of both pairs of tautomers of  compounds 5-7 and 2b were calculated at 

B3LYP/6-311+G(d,p) with implicit acetonitrile by CPCM6,7 on geometries optimized in the gas-phase 

at B3LYP/6-31G(d) or MIDI!. The difference in computed energy between tautomers of a given species, 

ΔE, provided a means of estimating the equilibrium constants and corresponding Boltzmann 

distributions of the respective tautomers (Table 3). In each case, the energy calculated for the 

quinolinone tautomer reflects a greater stability than that of the quinolinol tautomer; the literature5 fails 

to mention the presence of the apparently more stable tautomer 2'a over 2a while in our case the 

presence of 2'b dominates that of 2b in addition to all similar synthetic intermediates.  Furthermore, the 

energy computed for SW isomer 1b (-1231.00869 Eh) is less negative than that of either LW tautomer, 

2b or 2'b, explaining why the LW isomer is exclusively present even after prolonged standing in the 

dark in the solid state or in solution.  Similar results were obtained for 1a (-1231.01820 Eh) being less 
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stable than either 2a or 2'a, and 2'a being favored over 2a.  Admittedly the difference between these 

two LW tautomers for Postupnaya's regioisomer5 is less than for ours. 

Finally, we sought to employ cyclic voltammetry to confirm the solution structure of 2'b and 

simultaneously validate our computational method for predicting ground-state reduction potentials, 

which we have demonstrated to be accurate to within about 100 mV for a wide range of structures, 

including very close analogs of these photochromes.3  Interestingly, the observed voltammogram of a 

solution of 2'b yielded an experimental reduction potential of -0.67 V vs SCE, which is consistent with 

the reduction potential our method would predict for quinolinol tautomer 2b (-0.72 V vs SCE) rather 

than for 2'b (-1.13 V vs SCE).  This reduction potential was observed regardless of scan rate (from 10 – 

10,000 mV/sec), and indicates that 2'b must be in rapid equilibrium with 2b in solution, even though 2b 

is not present in quantities detectable by NMR (regardless of solvent or the presence or absence of 

electrolyte in solution.) 

 

Conclusion 

The literature route reported for preparing 1a5 failed to yield 1b in our hands.  We devised a more 

straightforward route to the OSHD photochromes, only to find that we failed to isolate the SW isomer 

1b, but rather a quinonimine LW isomer.  This LW has been conclusively demonstrated to exist as the 

quinolinone (keto) tautomer 2'b, both in solution and in the crystalline solid state.  This appears 

reasonable on the basis of computations that demonstrate the greater thermodynamic stability of 2' over 

both its quinolinol (enol) tautomer 2 and the spirocyclic SW isomer 1 for our regioisomer, and to a 

lesser extent, Postupnaya's as well. Cyclic voltammetry, in concert with our computational method for 

predicting ground-state reduction potentials,3 does provide evidence of a rapid equilibrium between 2'b 

and 2b (even though our other data indicate this equilibrium lies far toward the keto tautomer.) 
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Furthermore, this application serves as a validation of our computational method and suggests it will be 

useful in designing future photochromic photooxidant targets. 

Experimental  

General Methods. 1H and 13C NMR spectra were recorded on 400 MHz instruments.  Chemical 

shifts are given in ppm relative to appropriate solvent residual signals (CDCl3, DMSO-d6) reported in 

the literature.8 NMR experiments involving proton/deuterium exchange were done by adding 1-2 drops 

of D2O to existing NMR samples and shaking vigorously before recording the deuterium-exchanged 

spectra.  

All calculations were performed on the MU3C cluster9 at Hope College implemented through 

the WebMO10 graphical user interface using density functional theory (DFT) on Gaussian0311 with the 

Becke 3 Lee, Yang, and Parr (B3LYP) hybrid functional. Single-point energies were calculated with 

implicit acetonitrile solvent by the conductor-like polarizable continuum model (CPCM) using the 

default UA0 radii at 6-311+G(d,p) on gas-phase geometries computed at B3LYP/MIDI! or 6-31G(d).  

Computationally predicted reduction potentials were obtained using correlation 7 from our recently 

published manuscript.3 

Cyclic voltammetry was conducted using a glassy carbon working electrode, platinum wire 

counter electrode, and a non-aqueous Ag/AgNO3 reference electrode.  Reference (10 mM AgNO3) and 

analyte solutions (1 mM) were freshly prepared in solutions of dry acetonitrile (similar results also 

obtained in dry DMSO) containing 0.1 M tetrabutylammonium hexafluorophosphate as supporting 

electrolyte, and experiments were conducted on argon-deaerated solutions under a gently flowing dry 

argon blanket.  Results were normalized to ferrocene/ferrocenium by back-to-back experiments (which 

also served to set iR compensation), and were then corrected to vs SCE.12,13  
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GC/MS characterization was performed through a 30 m × 0.25 mm × 0.25 μm Agilent HP-5ms 

or equivalent capillary column at a flow rate of 0.93 mL/min of UHP He carrier gas. One-μL samples of 

solutions of approximately 0.2 mg/mL concentration were injected into the split/splitless injector at 250 

°C at a 50:1 split ratio. The initial oven temperature of 50 °C was held for 5 minutes then ramped to 200 

°C at 10 °C/min, then to 320 °C at 20 °C/min then held there for 10 minutes. The transfer line 

temperature was 280 °C into a 70 eV electron impact source at 230 °C with a quadrupole temperature of 

150 °C.  HRMS data was obtained by direct probe with electron impact ionization. 

 Crystals of 2'b were grown from THF/pentane via a vapor-diffusion method.14 For synthetic 

intermediate 5', crystals were grown from 1-propanol/pentane using a liquid-layering technique referred 

to as solvent diffusion.14 X-ray data were collected at 100 K on a CCD diffractometer equipped with a 

graphite-monochromator using Cu Kα radiation (λ=1.54178 Å).  Data sets were corrected for Lorentz 

and polarization effects as well as absorption.  The criterion for observed reflections is I > 2σ(I).  

Lattice parameters were determined from least-squares analysis and reflection data.  Empirical 

absorption corrections were applied using SADABS.15  The structures were solved by direct methods and 

refined by full-matrix least-squares analysis on F2 using X-SEED16 equipped with SHELXS17.  All non-

hydrogen atoms were refined anisotropically by full-matrix least-squares on F2 by the use of the 

SHELXL17 program.  NH hydrogens in 2'b and 5' were located in difference Fourier synthesis and 

refined with Uiso=1.2Ueq and N-H distances restrained to 0.85(2) Å.  The remaining H atoms were 

included in idealized geometric positions with Uiso=1.2Ueq of the atom to which they were attached 

(Uiso=1.5Ueq for methyl groups). 

 Compounds 3b, 5', and 8 were prepared as previously reported.1  All other compounds were 

purchased commercially in the highest purity available and used as received, except for acetonitrile, 

DMF, and DMSO, which were dispensed from a column-based dry solvent purification system. 
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2,6-di-tert-butyl-4-(4-chloro-6,8-dimethylquinolin-5-ylimino)cyclohexa-2,5-dienone (4). In an 

adaptation of a literature procedure,5 in an attempt to prepare 1b, a mixture of 2,6-di-tert-butyl-1,4-

benzoquinone (DBB, 0.107 g, 0.49 mmol), 3b (0.101 g, 0.49 mmol), and anhydrous TsOH (0.0042 g, 

0.024 mmol, prepared by heating TsOH•H2O in an argon-purged, evacuated flask on a 100 °C oil bath 

until solid melted and water evolution ceased) was stirred at 150 °C in an oil bath for 18 h under argon. 

After cooling to room temperature, purification of the resultant dark solid by preparative thin layer 

chromatography on silica gel (20:80 EtOAc/hexane) yielded 0.0224 g (11%) of a dark red solid (4). mp 

145-147 °C; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.76 (d, 1H), 7.67 (s, 1H), 7.61 (d, 1H), 7.19 (d, 

1H), 6.26 (d, 1H), 2.69 (s, 3H), 2.02 (s, 3H), 1.32 (s, 9H), 1.02 (s, 9H); 13C NMR (400 MHz, CDCl3): δ 

(ppm) 187.6, 160.2, 154.1, 154.0, 148.4, 148.0, 142.2, 141.1, 134.1, 133.6, 133.5, 123.4, 122.5, 121.6, 

119.2, 35.66, 35.64, 29.7, 29.5, 19.0, 18.8; GC/MS rt 26.019 min. (m/z 408/410, 351); HRMS (EI) m/z: 

calcd for C25H29ClN2O 408.1968, found 408.1972. 

6,8-dimethylquinolin-4(1H)-one (5'). Prepared as previously reported.1 mp 223-228 °C; 1H NMR (400 

MHz, DMSO-d6): δ (ppm) 11.04 (br s, 1H), 7.78 (t, 1H), 7.75 (s, 1H), 7.33 (s, 1H), 6.02 (d, 1H), 2.44 (s, 

3H), 2.36 (s, 3H); 13C NMR (400 MHz, DMSO-d6): δ (ppm) 176.9, 139.0, 137.8, 133.8, 131.8, 126.2, 

125.8, 122.1, 108.4, 20.6, 17.1; GC/MS rt 23.176 min. (m/z 173, 158, 144, 130). 

6,8-dimethyl-5-nitroquinolin-4(1H)-one (6'). In an adaptation to the literature method,1 a flask 

containing concentrated H2SO4 (17 mL) was slowly charged with 5' (7.5215 g, 43.42 mmol) at 0 °C, 

creating a dark brown solution. A mixture of concentrated H2SO4 (3.4 mL) and fuming (90%) HNO3 

(4.1 mL) was added drop-wise to the solution while stirring at 0 °C. The reaction mixture was stirred at 

0 °C for 1 h and then added to a 2-L flask containing 300 g of ice. Once the ice had melted, the light tan 

mixture was slowly neutralized with saturated aqueous sodium carbonate (220 mL). Vacuum filtration 

of the mixture through a medium-porosity frit yielded a clay-like tan solid. Vacuum drying yielded 
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8.9457 g (94.4%) of a light tan solid (6'). mp 300-330 °C (dec); 1H NMR (400 MHz, DMSO-d6): δ 

(ppm) 11.42 (br s, 1H), 7.88 (t, 1H), 7.56 (s, 1H), 6.09 (d, 1H), 2.49 (s, 3H), 2.20 (s, 3H); 13C NMR (400 

MHz, DMSO-d6): δ (ppm) 174.0, 145.5, 139.6, 137.6, 134.4, 129.0, 123.3, 116.1, 109.9, 17.2, 15.3; 

GC/MS rt 25.276 min. (m/z 218, 188, 171, 143, 115). HRMS (EI) m/z: calcd for C11H10N2O3 218.0691, 

found 218.0696. 

Hydrolysis of 8 to prove structure of 6'. A round-bottom flask fitted with a water-cooled condenser was 

charged with 8 (0.0505 g, 0.21 mmol) with acetic acid (1 mL) and HCl (0.5 mL). The clear, yellow 

mixture was stirred in a 115 °C oil bath for 22 h. Upon cooling to room temperature, a yellowish solid 

precipitated. The mixture was added to water (~20 mL) and neutralized with 2M NaOH. Vacuum 

filtration afforded 0.0278 g (60%) of a pale yellow solid (6'). mp 300-330 °C (dec); 1H NMR (400 MHz, 

DMSO-d6): δ (ppm) 11.42 (br s, 1H), 7.88 (d, 1H), 7.56 (s, 1H), 6.09 (d, 1H), 2.49 (s, 3H), 2.20 (s, 3H); 

GC/MS rt 25.207 min. (m/z 218, 188, 171, 143, 115). 

5-amino-6,8-dimethylquinolin-4(1H)-one (7'). A solution was prepared by dissolving 6' (4.5108 g, 

20.67 mmol) in DMF (400 mL); gentle heating was required to effect dissolution. The resulting orange 

solution was added to a 500-mL heavy-walled bottle, along with 0.45 g of 10% palladium on carbon 

(0.42 mmol Pd). The bottle was placed in a Parr hydrogenator, deaerated by repeated purging with 

nitrogen, then charged with hydrogen to a pressure of 60 psi and shaken, with hydrogen pressure in the 

100 mL headspace maintained above 50 psi until three equivalents of H2 had been absorbed and 

hydrogen uptake ceased.  The apparatus was again purged with nitrogen before opening to atmosphere, 

at which point the black mixture was filtered through celite. Rotary evaporation of the dark orange 

filtrate followed by vacuum drying yielded 3.668 g (94.3%) of a dark brown solid (7'). mp 214-217 °C; 

1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.55 (br d, 1H), 7.59 (t, 1H), 7.23 (br s, 2H), 7.04 (s, 1H), 

5.86 (d, 1H), 2.22 (s, 3H), 2.02 (s, 3H); 13C NMR (400MHz, DMSO-d6): δ (ppm) 181.7, 146.5, 138.4, 
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137.9, 135.1, 112.4, 111.9, 108.7, 108.6, 16.7, 16.5; GC/MS rt 24.291 min. (m/z 188, 187, 173). HRMS 

(EI) m/z: calcd for C11H12N2O 188.0950, found 188.0948. 

Hydrolysis of 3b to prove structure of 7'. A round-bottom flask was charged with 3b (0.10660 g, 0.52 

mmol) with acetic acid (2 mL) and HCl (1 mL) and equipped with a water-cooled condenser. The clear, 

red mixture was stirred and refluxed for 22 h. Upon cooling to room temperature, a solid precipitated 

from solution. The mixture was added to ~20 mL water and neutralized with 2M NaOH, then stirred on 

an ice bath for 5 minutes. Vacuum filtration allowed the isolation of 0.0615 g (63%) of a brown solid 

(7'). mp 218-222 °C; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.55 (br d, 1H), 7.59 (t, 1H), 7.21 (br s, 

2H), 7.03 (s, 1H), 5.86 (d, 1H), 2.22 (s, 3H), 2.02 (s, 3H); GC/MS rt 24.291 (m/z 188, 187, 173). 

5-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dienylideneamino)-6,8-dimethylquinolin-4(1H)-one (2'b). A 

round-bottom flask was charged with 7' (1.2155 g, 6.46 mmol) and DBB (1.5668 g, 7.112 mmol). A 

magnetic stir-bar and 1-propanol (17.6 mL) were added and a water-cooled condenser was attached. The 

reaction was brought to reflux and held there for 50-120 h, monitoring by TLC. After cooling to room 

temperature, volatiles were removed by rotary evaporation to yield yielding 2.3840 g of a dark black 

residue (94% crude yield). The solid residues of several reaction runs were combined. A total of 3.5715 

g crude product was purified by column chromatography through 230-400 mesh silica gel, eluting 

with90:5:5 CHCl3/DMF/triethylamine. This yielded 0.2407 g (6.7% recovery)of a dark red solid after 

vacuum drying. mp 170-190 °C (dec); 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.83 (fine d, 1H), 7.68 

(t, 1H), 7.38 (s, 1H), 7.11 (s, 1H), 6.33 (s, 1H), 5.85 (d, 1H), 2.42 (s, 3H), 1.88 (s, 3H), 1.32 (s, 9H), 1.03 

(s, 9H); 13C NMR (400 MHz, DMSO-d6): δ (ppm) 187.2, 177.3, 156.3, 151.4, 151.2, 145.0, 138.3, 

138.1, 134.4, 134.2, 121.6, 121.0, 117.8, 116.1, 110.2, 34.9, 34.8, 29.2, 29.0, 17.3, 17.0; GC/MS rt 

26.689 min. (m/z 390, 375, 187). 
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Attempted hydrolysis of 4 to 2'b (obtaining 7'). A round-bottom flask was charged with 4 (0.0504 g, 

0.12 mmol) with acetic acid (1 mL) and HCl (0.5 mL). The clear, red mixture was stirred at reflux for 

24 h under argon. The resultant black mixture was added to ~20 mL of water and neutralized with 2 M 

NaOH. After the mixture was neutralized, it was vacuum filtered through a medium-porosity frit to 

isolate 0.026 g (54%) of a black solid. Characterization revealed that both the chlorine atom and the 

imine had been hydrolyzed, resulting in 7'. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.56 (br s, 1H), 

7.59 (t, 1H), 7.17 (br s, 2H), 7.03 (s, 1H), 5.86 (d, 1H), 2.21 (s, 3H), 2.02 (s, 3H); GC/MS rt 24.164 (m/z 

188, 187, 173). 
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