184 research outputs found

    Importance of glycolysis and oxidative phosphorylation in advanced melanoma

    Get PDF
    Serum lactate dehydrogenase (LDH) is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS), we subsequently determined using tissue microarray (TMA) analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT) 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy

    Germline BAP1 Inactivation Is Preferentially Associated with Metastatic Ocular Melanoma and Cutaneous-Ocular Melanoma Families

    Get PDF
    Background: BAP1 has been shown to be a target of both somatic alteration in high-risk ocular melanomas (OM) and germline inactivation in a few individuals from cancer-prone families. These findings suggest that constitutional BAP1 changes may predispose individuals to metastatic OM and that familial permeation of deleterious alleles could delineate a new cancer syndrome. Design: To characterize BAP1ā€™s contribution to melanoma risk, we sequenced BAP1 in a set of 100 patients with OM, including 50 metastatic OM cases and 50 matched non-metastatic OM controls, and 200 individuals with cutaneous melanoma (CM) including 7 CM patients from CM-OM families and 193 CM patients from CM-non-OM kindreds. Results: Germline BAP1 mutations were detected in 4/50 patients with metastatic OM and 0/50 cases of non-metastatic OM (8 % vs. 0%, p = 0.059). Since 2/4 of the BAP1 carriers reported a family history of CM, we analyzed 200 additional hereditary CM patients and found mutations in 2/7 CM probands from CM-OM families and 1/193 probands from CM-non-OM kindreds (29 % vs. 0.52%, p =.003). Germline mutations co-segregated with both CM and OM phenotypes and were associated with the presence of unique nevoid melanomas and highly atypical nevoid melanoma-like melanocytic proliferations (NEMMPs). Interestingly, 7/14 germline variants identified to date reside in C-terminus suggesting that the BRCA1 binding domain i

    Revision of the Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis Classification Schema for Melanocytic Lesions: A Consensus Statement

    Full text link
    IMPORTANCE A standardized pathology classification system for melanocytic lesions is needed to aid both pathologists and clinicians in cataloging currently existing diverse terminologies and in the diagnosis and treatment of patients. The Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) has been developed for this purpose. OBJECTIVE To revise the MPATH-Dx version 1.0 classification tool, using feedback from dermatopathologists participating in the National Institutes of Health-funded Reducing Errors in Melanocytic Interpretations (REMI) Study and from members of the International Melanoma Pathology Study Group (IMPSG). EVIDENCE REVIEW Practicing dermatopathologists recruited from 40 US states participated in the 2-year REMI study and provided feedback on the MPATH-Dx version 1.0 tool. Independently, member dermatopathologists participating in an IMPSG workshop dedicated to the MPATH-Dx schema provided additional input for refining the MPATH-Dx tool. A reference panel of 3 dermatopathologists, the original authors of the MPATH-Dx version 1.0 tool, integrated all feedback into an updated and refined MPATH-Dx version 2.0. FINDINGS The new MPATH-Dx version 2.0 schema simplifies the original 5-class hierarchy into 4 classes to improve diagnostic concordance and to provide more explicit guidance in the treatment of patients. This new version also has clearly defined histopathological criteria for classification of classes I and II lesions; has specific provisions for the most frequently encountered low-cumulative sun damage pathway of melanoma progression, as well as other, less common World Health Organization pathways to melanoma; provides guidance for classifying intermediate class II tumors vs melanoma; and recognizes a subset of pT1a melanomas with very low risk and possible eventual reclassification as neoplasms lacking criteria for melanoma. CONCLUSIONS AND RELEVANCE The implementation of the newly revised MPATH-Dx version 2.0 schema into clinical practice is anticipated to provide a robust tool and adjunct for standardized diagnostic reporting of melanocytic lesions and management of patients to the benefit of both health care practitioners and patients

    CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment

    Get PDF
    Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 Ɨ 10āˆ’7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 Ɨ 10āˆ’5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition

    HIF1Ī± and HIF2Ī± independently activate SRC to promote melanoma metastases

    Get PDF
    Malignant melanoma is characterized by a propensity for early lymphatic and hematogenous spread. The hypoxia-inducible factor (HIF) family of transcription factors is upregulated in melanoma by key oncogenic drivers. HIFs promote the activation of genes involved in cancer initiation, progression, and metastases. Hypoxia has been shown to enhance the invasiveness and metastatic potential of tumor cells by regulating the genes involved in the breakdown of the ECM as well as genes that control motility and adhesion of tumor cells. Using a Pten -deficient, Braf -mutant genetically engineered mouse model of melanoma, we demonstrated that inactivation of HIF1Ī± or HIF2Ī± abrogates metastasis without affecting primary tumor formation. HIF1Ī± and HIF2Ī± drive melanoma invasion and invadopodia formation through PDGFRĪ± and focal adhesion kinaseā€“mediated (FAK-mediated) activation of SRC and by coordinating ECM degradation via MT1-MMP and MMP2 expression. These results establish the importance of HIFs in melanoma progression and demonstrate that HIF1Ī± and HIF2Ī± activate independent transcriptional programs that promote metastasis by coordinately regulating cell invasion and ECM remodeling

    Integrative Genome Comparison of Primary and Metastatic Melanomas

    Get PDF
    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes

    MERTK receptor tyrosine kinase is a therapeutic target in melanoma

    Get PDF
    Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies
    • ā€¦
    corecore