7 research outputs found

    Glycomic and sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4

    Get PDF
    Gastric carcinoma MKN45 cells stably transfected with the full-length ST3GAL4 gene were characterised by glycomic and sialoproteomic analysis. Complementary strategies were applied to assess the glycomic alterations induced by ST3GAL4 overexpression. The N- and O-glycome data were generated in two parallel structural analyzes, based on PGC-ESI-MS/MS. Data on glycan structure identification and relative abundance in ST3GAL4 overexpressing cells and respective mock control are presented. The sialoproteomic analysis based on titanium-dioxide enrichment of sialopeptides with subsequent LC-MS/MS identification was performed. This analysis identified 47 proteins with significantly increased sialylation. The data in this article is associated with the research article published in Biochim Biophys Acta “Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer” [1]. Keywords: N-glycome, O-glycome, Gastric cancer, Sialyltransferase, Sialoproteom

    Differential proteomic profile of lumbar and ventricular cerebrospinal fluid

    Get PDF
    Abstract Background Pathological cerebral conditions may manifest in altered composition of the cerebrospinal fluid (CSF). Although diagnostic CSF analysis seeks to establish pathological disturbances in the brain proper, CSF is generally sampled from the lumbar compartment for reasons of technical ease and ethical considerations. We here aimed to compare the molecular composition of CSF obtained from the ventricular versus the lumbar CSF compartments to establish a relevance for employing lumbar CSF as a proxy for the CSF bathing the brain tissue. Methods CSF was collected from 46 patients with idiopathic normal pressure hydrocephalus (iNPH) patients during their diagnostic workup (lumbar samples) and in connection with their subsequent CSF diversion shunt surgery (ventricular samples). The mass-spectrometry-based proteomic profile was determined in these samples and in addition, selected biomarkers were quantified with ELISA (S100B, neurofilament light (NfL), amyloid-β (Aβ40, Aβ42), and total tau (T-tau) and phosphorylated tau (P-tau) forms). The latter analysis was extended to include paired porcine samples obtained from the lumbar compartment and the cerebromedullary cistern closely related to the ventricles. Results In total 1231 proteins were detected in the human CSF. Of these, 216 distributed equally in the two CSF compartments, whereas 22 were preferentially (or solely) present in the ventricular CSF and four in the lumbar CSF. The selected biomarkers of neurodegeneration and Alzheimer’s disease displayed differential distribution, some with higher (S100B, T-tau, and P-tau) and some with lower (NfL, Aβ40, Aβ42) levels in the ventricular compartment. In the porcine samples, all biomarkers were most abundant in the lumbar CSF. Conclusions The overall proteomic profile differs between the ventricular and the lumbar CSF compartments, and so does the distribution of clinically employed biomarkers. However, for a range of CSF proteins and biomarkers, one can reliably employ lumbar CSF as a proxy for ventricular CSF if or a lumbar/cranial index for the particular molecule has been established. It is therefore important to verify the compartmental preference of the proteins or biomarkers of interest prior to extrapolating from lumbar CSF to that of the ventricular fluid bordering the brain

    Omics-Based Approach Reveals Complement-Mediated Inflammation in Chronic Lymphocytic Inflammation With Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS)

    Get PDF
    Objective: Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare syndrome with relapsing brainstem/cerebellar symptoms. To examine the pathogenic processes and investigate potential biomarkers, we analyzed combined materials of brain and cerebrospinal fluid (CSF) by comprehensive methodologies. Materials and methods: To identify major pathways of perivascular inflammation in CLIPPERS, we first compared the CSF proteome (n = 5) to a neurodegenerative condition, Alzheimer’s disease (AD, n = 5). Activation of complement was confirmed by immunohistochemistry (IHC) on CLIPPERS brain samples (n = 3) and by ELISA in the CSF. For potential biomarkers, we used biomarker arrays, and compared inflammatory and vessel-associated proteins in the CSF of CLIPPERS (n = 5) with another inflammatory relapsing CNS disease, multiple sclerosis (RMS, n = 9) and healthy subjects (HS, n = 7). Results: Two hundred and seven proteins in the CSF discriminated CLIPPERS from AD. The complement cascade, immunoglobulins, and matrix proteins were among the most frequently represented pathways. Pathway analysis of upstream regulators suggested the importance of vascular cell adhesion protein 1 (VCAM1), IFN-γ, interleukin (IL)-1, and IL-10. Differential regulation of more than 10 complement proteins of the 3 complement pathways in the CSF pointed to the role of complement activation. IHC on brain samples confirmed the perivascular complement activation, i.e., deposition of C3bc, C3d, and the terminal C5b-9 complement complex that partially overlapped with accumulation of IgG in the vessel wall. Besides endothelial cell damage, reactivity to smooth muscle actin was lost in the walls of inflamed vessels, but the glia limitans was preserved. The semi-quantitative array indicated that increased level of IL-8/CXCL8 (p < 0.05), eotaxin/CCL11 (p < 0.01), and granulocyte colony-stimulating factor (p < 0.05) in CSF could distinguish CLIPPERS from HS. The quantitative array confirmed elevated concentration of IL-8/CXCL8 and eotaxin/CCL11 compared to HS (p < 0.05, respectively) besides increased levels of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.001). The increased concentration of VCAM-1 were able to differentiate CLIPPERS from RMS (p < 0.01), and a trend of elevated levels of ICAM-1 and IL-8/CXCL8 compared to RMS was also observed (p = 0.06, respectively). Conclusion: Complement activation, IgG deposition, and alterations of the extracellular matrix may contribute to inflammation in CLIPPERS. VCAM1, ICAM1, and IL-8 in the CSF may differentiate CLIPPERS from RMS

    A Proteomic Atlas of Lineage and Cancer-Polarized Expression Modules in Myeloid Cells Modeling Immunosuppressive Tumor-Infiltrating Subsets

    No full text
    Monocytic and granulocytic myeloid-derived suppressor cells together with tumor-infiltrating macrophages constitute the main tumor-infiltrating immunosuppressive myeloid populations. Due to the phenotypic resemblance to conventional myeloid cells, their identification and purification from within the tumors is technically difficult and makes their study a challenge. We differentiated myeloid cells modeling the three main tumor-infiltrating types together with uncommitted macrophages, using ex vivo differentiation methods resembling the tumor microenvironment. The phenotype and proteome of these cells was compared to identify linage-dependent relationships and cancer-specific interactome expression modules. The relationships between monocytic MDSCs and TAMs, monocytic MDSCs and granulocytic MDSCs, and hierarchical relationships of expression networks and transcription factors due to lineage and cancer polarization were mapped. Highly purified immunosuppressive myeloid cell populations that model tumor-infiltrating counterparts were systematically analyzed by quantitative proteomics. Full functional interactome maps have been generated to characterize at high resolution the relationships between the three main myeloid tumor-infiltrating cell types. Our data highlights the biological processes related to each cell type, and uncover novel shared and differential molecular targets. Moreover, the high numbers and fidelity of ex vivo-generated subsets to their natural tumor-shaped counterparts enable their use for validation of new treatments in high-throughput experiments

    Omics-Based Approach Reveals Complement-Mediated Inflammation in Chronic Lymphocytic Inflammation With Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS)

    No full text
    ObjectiveChronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare syndrome with relapsing brainstem/cerebellar symptoms. To examine the pathogenic processes and investigate potential biomarkers, we analyzed combined materials of brain and cerebrospinal fluid (CSF) by comprehensive methodologies.Materials and methodsTo identify major pathways of perivascular inflammation in CLIPPERS, we first compared the CSF proteome (n = 5) to a neurodegenerative condition, Alzheimer’s disease (AD, n = 5). Activation of complement was confirmed by immunohistochemistry (IHC) on CLIPPERS brain samples (n = 3) and by ELISA in the CSF. For potential biomarkers, we used biomarker arrays, and compared inflammatory and vessel-associated proteins in the CSF of CLIPPERS (n = 5) with another inflammatory relapsing CNS disease, multiple sclerosis (RMS, n = 9) and healthy subjects (HS, n = 7).ResultsTwo hundred and seven proteins in the CSF discriminated CLIPPERS from AD. The complement cascade, immunoglobulins, and matrix proteins were among the most frequently represented pathways. Pathway analysis of upstream regulators suggested the importance of vascular cell adhesion protein 1 (VCAM1), IFN-γ, interleukin (IL)-1, and IL-10. Differential regulation of more than 10 complement proteins of the 3 complement pathways in the CSF pointed to the role of complement activation. IHC on brain samples confirmed the perivascular complement activation, i.e., deposition of C3bc, C3d, and the terminal C5b-9 complement complex that partially overlapped with accumulation of IgG in the vessel wall. Besides endothelial cell damage, reactivity to smooth muscle actin was lost in the walls of inflamed vessels, but the glia limitans was preserved. The semi-quantitative array indicated that increased level of IL-8/CXCL8 (p &lt; 0.05), eotaxin/CCL11 (p &lt; 0.01), and granulocyte colony-stimulating factor (p &lt; 0.05) in CSF could distinguish CLIPPERS from HS. The quantitative array confirmed elevated concentration of IL-8/CXCL8 and eotaxin/CCL11 compared to HS (p &lt; 0.05, respectively) besides increased levels of ICAM-1 (p &lt; 0.05) and VCAM-1 (p &lt; 0.001). The increased concentration of VCAM-1 were able to differentiate CLIPPERS from RMS (p &lt; 0.01), and a trend of elevated levels of ICAM-1 and IL-8/CXCL8 compared to RMS was also observed (p = 0.06, respectively).ConclusionComplement activation, IgG deposition, and alterations of the extracellular matrix may contribute to inflammation in CLIPPERS. VCAM1, ICAM1, and IL-8 in the CSF may differentiate CLIPPERS from RMS

    Table_1_Omics-Based Approach Reveals Complement-Mediated Inflammation in Chronic Lymphocytic Inflammation With Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS).PDF

    No full text
    Objective<p>Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare syndrome with relapsing brainstem/cerebellar symptoms. To examine the pathogenic processes and investigate potential biomarkers, we analyzed combined materials of brain and cerebrospinal fluid (CSF) by comprehensive methodologies.</p>Materials and methods<p>To identify major pathways of perivascular inflammation in CLIPPERS, we first compared the CSF proteome (n = 5) to a neurodegenerative condition, Alzheimer’s disease (AD, n = 5). Activation of complement was confirmed by immunohistochemistry (IHC) on CLIPPERS brain samples (n = 3) and by ELISA in the CSF. For potential biomarkers, we used biomarker arrays, and compared inflammatory and vessel-associated proteins in the CSF of CLIPPERS (n = 5) with another inflammatory relapsing CNS disease, multiple sclerosis (RMS, n = 9) and healthy subjects (HS, n = 7).</p>Results<p>Two hundred and seven proteins in the CSF discriminated CLIPPERS from AD. The complement cascade, immunoglobulins, and matrix proteins were among the most frequently represented pathways. Pathway analysis of upstream regulators suggested the importance of vascular cell adhesion protein 1 (VCAM1), IFN-γ, interleukin (IL)-1, and IL-10. Differential regulation of more than 10 complement proteins of the 3 complement pathways in the CSF pointed to the role of complement activation. IHC on brain samples confirmed the perivascular complement activation, i.e., deposition of C3bc, C3d, and the terminal C5b-9 complement complex that partially overlapped with accumulation of IgG in the vessel wall. Besides endothelial cell damage, reactivity to smooth muscle actin was lost in the walls of inflamed vessels, but the glia limitans was preserved. The semi-quantitative array indicated that increased level of IL-8/CXCL8 (p < 0.05), eotaxin/CCL11 (p < 0.01), and granulocyte colony-stimulating factor (p < 0.05) in CSF could distinguish CLIPPERS from HS. The quantitative array confirmed elevated concentration of IL-8/CXCL8 and eotaxin/CCL11 compared to HS (p < 0.05, respectively) besides increased levels of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.001). The increased concentration of VCAM-1 were able to differentiate CLIPPERS from RMS (p < 0.01), and a trend of elevated levels of ICAM-1 and IL-8/CXCL8 compared to RMS was also observed (p = 0.06, respectively).</p>Conclusion<p>Complement activation, IgG deposition, and alterations of the extracellular matrix may contribute to inflammation in CLIPPERS. VCAM1, ICAM1, and IL-8 in the CSF may differentiate CLIPPERS from RMS.</p
    corecore