282 research outputs found

    Project JOVE

    Get PDF
    The goal of this project is to investigate new areas of research pertaining to free surface-interface fluids mechanics and/or microgravity which have potential commercial applications. This paper presents an introduction to ferrohydrodynamics (FHD), and discusses some applications. Also, computational methods for solving free surface flow problems are presented in detail. Both have diverse applications in industry and in microgravity fluids applications. Three different modeling schemes for FHD flows are addressed and the governing equations, including Maxwell's equations, are introduced. In the area of computational modeling of free surface flows, both Eulerian and Lagrangian schemes are discussed. The state of the art in computational methods applied to free surface flows is elucidated. In particular, adaptive grids and re-zoning methods are discussed. Additional research results are addressed and copies of the publications produced under the JOVE Project are included

    Acoustic forcing of a liquid drop

    Get PDF
    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses

    Interface behavior of a multi-layer fluid configuration subject to acceleration in a microgravity environment, supplement 1

    Get PDF
    With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined

    Nonlinear effects on the natural modes of oscillation of a finite length inviscid fluid column, supplement 2

    Get PDF
    The aspects of nonlinear behavior of a finite length liquid column is investigated with an emphasis on bridge dynamics. The primary objectives are to determine the nonlinear corrections to the interface shape of a naturally oscillating finite length liquid column and to determine the nonlinear corrections to the oscillation frequencies for various modes of oscillation. Application of the Lindstedt-Poincare expansion in conjunction with the domain perturbation techniques results in an hierarchical system of equations

    Automatic eduction and statistical analysis of coherent structures in the wall region of a confine plane

    Get PDF
    This paper describes a vortex detection algorithm used to expose and statistically characterize the coherent flow patterns observable in the velocity vector fields measured by Particle Image Velocimetry (PIV) in the impingement region of air curtains. The philosophy and the architecture of this algorithm are presented. Its strengths and weaknesses are discussed. The results of a parametrical analysis performed to assess the variability of the response of our algorithm to the 3 user-specified parameters in our eduction scheme are reviewed. The technique is illustrated in the case of a plane turbulent impinging twin-jet with an opening ratio of 10. The corresponding jet Reynolds number, based on the initial mean flow velocity U0 and the jet width e, is 14000. The results of a statistical analysis of the size, shape, spatial distribution and energetic content of the coherent eddy structures detected in the impingement region of this test flow are provided. Although many questions remain open, new insights into the way these structures might form, organize and evolve are given. Relevant results provide an original picture of the plane turbulent impinging jet

    The DUNDRUM Quartet: validation of structured professional judgement instruments DUNDRUM-3 assessment of programme completion and DUNDRUM-4 assessment of recovery in forensic mental health services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Moving a forensic mental health patient from one level of therapeutic security to a lower level or to the community is influenced by more than risk assessment and risk management. We set out to construct and validate structured professional judgement instruments for consistency and transparency in decision making</p> <p>Methods</p> <p>Two instruments were developed, the seven-item DUNDRUM-3 programme completion instrument and the six item DUNDRUM-4 recovery instrument. These were assessed for all 95 forensic patients at Ireland's only forensic mental health hospital.</p> <p>Results</p> <p>The two instruments had good internal consistency (Cronbach's alpha 0.911 and 0.887). Scores distinguished those allowed no leave or accompanied leave from those with unaccompanied leave (ANOVA F = 38.1 and 50.3 respectively, p < 0.001). Scores also distinguished those in acute/high security units from those in medium or in low secure/pre-discharge units. Each individual item distinguished these levels of need significantly. The DUNDRUM-3 and DUNDRUM-4 correlated moderately with measures of dynamic risk and with the CANFOR staff rated unmet need (Spearman r = 0.5, p < 0.001).</p> <p>Conclusions</p> <p>The DUNDRUM-3 programme completion items distinguished significantly between levels of therapeutic security while the DUNDRUM-4 recovery items consistently distinguished those given unaccompanied leave outside the hospital and those in the lowest levels of therapeutic security. This data forms the basis for a prospective study of outcomes now underway.</p
    corecore