13 research outputs found

    An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ

    Get PDF
    Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow

    Human Gastrointestinal Juices Intended for Use in In Vitro Digestion Models

    Get PDF
    The aim of this study was to characterise the individual human gastric and duodenal juices to be used in in vitro model digestion and to examine the storage stability of the enzymes. Gastroduodenal juices were aspirated, and individual variations in enzymatic activities as well as total volumes, pH, bile acids, protein and bilirubin concentrations were recorded. Individual pepsin activity in the gastric juice varied by a factor of 10, while individual total proteolytic activity in the duodenal juice varied by a factor of 5. The duodenal amylase activity varied from 0 to 52.6 U/ml, and the bile acid concentration varied from 0.9 to 4.5 mM. Pooled gastric and duodenal juices from 18 volunteers were characterised according to pepsin activity (26.7 U/ml), total proteolytic activity (14.8 U/ml), lipase activity (951.0 U/ml), amylase activity (26.8 U/ml) and bile acids (4.5 mM). Stability of the main enzymes in two frozen batches of either gastric or duodenal juice was studied for 6 months. Pepsin activity decreased rapidly and adjusting the pH of gastric juice to 4 did not protect the pepsin from degradation. Lipase activity remained stable for 4 months, however decreased rapidly thereafter even after the addition of protease inhibitors. Glycerol only marginally stabilised the survival of the enzymatic activities. These results of compositional variations in the individual gastrointestinal juices and the effect of storage conditions on enzyme activities are useful for the design of in vitro models enabling human digestive juices to simulate physiological digestion

    Lack of EGF receptor contributes to drug sensitivity of human germline cells

    Get PDF
    Germline mutations have been associated with generation of various types of tumour. In this study, we investigated genetic alteration of germline tumours that affect the drug sensitivity of cells. Although all germline tumour cells we tested were hypersensitive to DNA-damaging drugs, no significant alteration was observed in their DNA repair activity or the expression of DNA repair proteins. In contrast, germline tumours expressed very low level of epidermal growth factor receptor (EGFR) compared to drug-resistant ovarian cancer cells. An immunohistochemical analysis indicated that most of the primary germline tumours we tested expressed very low level of EGFR. In accordance with this, overexpression of EGFR in germline tumour cells showed an increase in drug resistance, suggesting that a lack of EGFR, at least in part, contributes to the drug sensitivity of germline tumours
    corecore