41 research outputs found

    Dark-adapted versus bleached state in fluorescence lifetime imaging ophthalmoscopy

    Get PDF
    Purpose: The (early) detection of diseases based on metabolic changes in the retina is the goal of the novel autofluorescence lifetime ophthalmoscopy (FLIO) technique. These metabolic changes can be detected as alterations in the fundus autofluorescence (FAF) lifetimes. The influences of the photopigment bleaching and photobleaching on the FAF lifetimes are unknown. Thus, we performed a volunteer study to investigate these influences. Methods: In 21 healthy volunteers (23.6±3.8 years) time-resolved FAF was measured with a FLIO device (30° of fundus, excitation at 473nm, detection in two spectral channels: 500-560nm (ch1) and 560-720nm (ch2), time-correlated single photon counting method). All subjects had a crystalline lens. The pupil was dilated with 0.5% Tropicamid. After volunteers adapted to the dark using a custom-made lightproof eyewear over a period of 30 min, the first FLIO measurement was recorded (dark-adapted state). Subsequently, one eye was bleached for 1 min using a luminance of 3200cd/m2, followed by a FLIO measurement (bleached state). The fluorescence lifetimes were estimated from the FAF decays, based on three exponential functions, using the software FLIMX (www.flimx.de). Average values from the central region, and the inner and outer rings of the ETDRS grid were utilized to compare both bleaching states using analysis of variance, Friedman, and post hoc tests. Results : Only ch2 yielded significant changes (p<0.05) for the fluorescence lifetime τ2 from all ETDRS regions (+19-28ps), for the fluorescence lifetime τ1 (+6ps) and the mean fluorescence lifetime (+6ps) in the central area that were less than 10% in magnitude. Additionally, the acquisition time in the bleached state was significantly reduced by approximately 20% on average, compared to the dark-adapted state. The fluorescence lifetime differences caused by bleaching were much smaller than pathological states known from literature. Conclusions: We conclude that bleaching is not relevant for current clinical FLIO applications because of the small magnitude of the elicited fluorescence lifetime changes. Thus, it is advisable to instruct patients to wait in a bright room before FLIO measurements. If the expected changes in the fluorescence lifetime in a specific experimental paradigm are small, FLIO users should follow a strict acquisition protocol in terms of the photopigment bleaching state of the patients to obtain the most reliable results

    Fundus autofluorescence beyond lipofuscin: lesson learned from ex vivo fluorescence lifetime imaging in porcine eyes

    Get PDF
    Fundus autofluorescence (FAF) imaging is a well-established method in ophthalmology; however, the fluorophores involved need more clarification. The FAF lifetimes of 20 post mortem porcine eyes were measured in two spectral channels using fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with clinical data from 44 healthy young subjects. The FAF intensity ratio of the short and the long wavelength emission (spectral ratio) was determined. Ex vivo porcine fundus fluorescence emission is generally less intense than that seen in human eyes. The porcine retina showed significantly (p<0.05) longer lifetimes than the retinal pigment epithelium (RPE): 584 ± 128 ps vs. 121 ± 55 ps 498-560 nm, 240 ± 42 ps vs. 125 ± 20 ps at 560-720 nm. Furthermore, the lifetimes of the porcine RPE were significantly shorter (121 ± 55 ps and 125 ± 20 ps) than those measured from human fundus in vivo (162 ± 14 ps and 179 ± 13 ps, respectively). The fluorescence emission of porcine retina was shifted towards a shorter wavelength compared to that of RPE and human FAF. This data shows the considerable contribution of fluorophores in the neural retina to total FAF intensity in porcine eyes

    Fluorescence lifetime imaging ophthalmoscopy.

    Get PDF
    Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review

    Monitoring macular pigment in geographic atrophy using FLIO

    Get PDF
    Purpose : The pathophysiology of geographic atrophy (GA) is not yet fully understood and prognostic factors are still under discussion. Little is known about how the macular pigment (MP) changes during the progress of the disease. Monitoring fundus autofluorescence (FAF) lifetimes in GA using Fluorescence-lifetime-Imaging-Ophthalmoscopy (FLIO) may lead to novel insights, especially since FLIO can detect MP. Methods : Using FLIO (Heidelberg-Engineering, Heidelberg, Germany), time-resolved FAF of 20 eyes with GA has been recorded in two spectral channels (ch1: 498-560nm; ch2: 560-720nm) and approximated by a series of three exponentials, resulting in three lifetimes: (Ï„1-Ï„3). Their amplitude-weighted mean (Ï„m) per channel and pixel was utilized as the main parameter for statistical analysis. A FAF image was acquired with each measurement; OCT scans and fundus photography were obtained. Ï„m was averaged over the standardized ETDRS grid and the area of the fovea (diameter 0,1mm). Of special interest were differences between the fovea and the Inner Ring (IR) of the grid. These differences (Ï„m (IR) minus Ï„m (fovea)) were correlated to the best corrected visual acuity (BCVA). Results : Mean FAF lifetimes in GA differ according to the individual progression of the disease. Additionally to hypo- and hyperfluorescent regions detectable with FAF, FLIO visualizes differences within these regions: The presence of MP results in shorter FAF lifetimes (250-400 ps) compared to other atrophic regions (>700 ps) (figure 1). These short FAF decays are often related to a spared fovea. The Ï„m differences between the IR and the Fovea (Ï„m (IR) minus Ï„m (fovea)) correlate with the BCVA (r:0.6; p<0.01 for both channels). Conclusions : Whereas conventional FAF images only show differences in the fluorescence intensity, FLIO can additionally distinguish between different atrophic areas, better showing the presence of MP, resulting in different lifetimes and possibly detecting spared regions. FLIO is a new imaging method to monitor GA. If FLIO can provide information on the GA progression needs to be further evaluated. This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016

    Bleaching effects and fluorescence lifetime imaging ophthalmoscopy

    Get PDF
    This study investigates the influence of photopigment bleaching on autofluorescence lifetimes in the fundus in 21 young healthy volunteers. Three measurements of 30° retinal fields in two spectral channels (SSC: 498–560 nm, LSC: 560–720 nm) were obtained for each volunteer using fluorescence lifetime imaging ophthalmoscopy (FLIO). After dark-adaptation by wearing a custom-made lightproof mask for 30 minutes, the first FLIO-measurement was recorded (dark-adapted state). Subsequently, the eye was bleached for 1 minute (luminance: 3200 cd/m2), followed by a second FLIO-measurement (bleached state). Following an additional 10 minute dark adaptation using the mask, a final FLIO-measurement was recorded (recovered state). Average values of the fluorescence lifetimes were calculated from within different areas of a standardized early treatment diabetic retinopathy study (ETDRS) grid (central area, inner and outer rings). The acquisition time in the bleached state was significantly shortened by approximately 20%. The SSC did not show any significant changes in fluorescence lifetimes with photopigment bleaching, only the LSC showed small but significant bleaching-related changes in the fluorescence lifetimes τ1 and τ2 from all regions, as well as the mean fluorescence lifetime in the central area. The fluorescence lifetime differences caused by bleaching were by far less significant than pathological changes caused by eye diseases. The magnitudes of fluorescence lifetime changes are <10% and do not interfere with healthy or disease related FLIO patterns. Thus, we conclude that bleaching is not a relevant confounder in current clinical applications of FLIO

    Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets

    Get PDF
    Schizophrenia (SCZ) is a severe and debilitating neuropsychiatric disorder with an estimated heritability of ~80%. Recently, de novo mutations, identified by next-generation sequencing (NGS) technology, have been suggested to contribute to the risk of developing SCZ. Although these studies show an overall excess of de novo mutations among patients compared with controls, it is not easy to pinpoint specific genes hit by de novo mutations as actually involved in the disease process. Importantly, support for a specific gene can be provided by the identification of additional alterations in several independent patients. We took advantage of existing genome-wide single-nucleotide polymorphism data sets to screen for deletions or duplications (copy number variations, CNVs) in genes previously implicated by NGS studies. Our approach was based on the observation that CNVs constitute part of the mutational spectrum in many human disease-associated genes. In a discovery step, we investigated whether CNVs in 55 candidate genes, suggested from NGS studies, were more frequent among 1637 patients compared with 1627 controls. Duplications in RB1CC1 were overrepresented among patients. This finding was followed-up in large, independent European sample sets. In the combined analysis, totaling 8461 patients and 112 871 controls, duplications in RB1CC1 were found to be associated with SCZ (P=1.29 × 10−5; odds ratio=8.58). Our study provides evidence for rare duplications in RB1CC1 as a risk factor for SCZ

    Fundus autofluorescence lifetimes and spectral features of soft drusen and hyperpigmentation in age-related macular degeneration

    Get PDF
    Purpose: To investigate the autofluorescence lifetimes as well as spectral characteristics of soft drusen and retinal hyperpigmentation in age-related macular degeneration (AMD). Methods: Forty-three eyes with nonexudative AMD were included in this study. Fluorescence lifetime imaging ophthalmoscopy (FLIO), which detects autofluorescence decay over time in the short (SSC) and long (LSC) wavelength channel, was performed. The mean autofluorescence lifetime (τm) and the spectral ratio (sr) of autofluorescence emission in the SSC and LSC were recorded and analyzed. In total, 2760 soft drusen and 265 hyperpigmented areas were identified from color fundus photographs and spectral domain optical coherence tomography (SD-OCT) images and superimposed onto their respective AF images. τm and sr of these lesions were compared with fundus areas without drusen. For clearly hyperfluorescent drusen, the local differences compared to fundus areas without drusen were determined for lifetimes and sr. Results: Hyperpigmentation showed significantly longer τm (SSC: 341 ± 81 vs. 289 ± 70 ps, P < 0.001; LSC: 406 ± 42 vs. 343 ± 42 ps, P < 0.001) and higher sr (0.621 ± 0.077 vs. 0.539 ± 0.083, P < 0.001) compared to fundus areas without hyperpigmentation or drusen. No significant difference in τm was found between soft drusen and fundus areas without drusen. However, the sr was significantly higher in soft drusen (0.555 ± 0.077 vs. 0.539 ± 0.081, P < 0.0005). Hyperfluorescent drusen showed longer τm than surrounding fundus areas without drusen (SSC: 18 ± 42 ps, P = 0.074; LSC: 16 ± 29 ps, P = 0.020). Conclusions: FLIO can quantitatively characterize the autofluorescence of the fundus, drusen, and hyperpigmentation in AMD. Translational Relevance : The experimental FLIO technique was applied in a clinical investigation. As FLIO yields information on molecular changes in AMD, it might support future diagnostic

    A Critical Case of ‘White Light Distortions' While Rock Climbing

    No full text
    A 62-year-old woman presented with ‘white light distortions' in her right eye. She reported metamorphopsiaand whiteout of vision in her right eye only, whenever she was looking up while rock climbing

    Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy.

    No full text
    Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics
    corecore