32 research outputs found

    Causal Set Phenomenology

    Full text link
    Central to the development of any new theory is the investigation of the observable consequences of the theory. In the search for quantum gravity, research in phenomenology has been dominated by models violating Lorentz invariance (LI) -- despite there being, at present, no evidence that LI is violated. Causal set theory is a LI candidate theory of QG that seeks not to quantise gravity as such, but rather to develop a new understanding of the universe from which both GR and QM could arise separately. The key hypothesis is that spacetime is a discrete partial order: a set of events where the partial ordering is the physical causal ordering between the events. This thesis investigates Lorentz invariant QG phenomenology motivated by the causal set approach. Massive particles propagating in a discrete spacetime will experience diffusion in both position and momentum in proper time. This thesis considers this idea in more depth, providing a rigorous derivation of the diffusion equation in terms of observable cosmic time. The diffusion behaviour does not depend on any particular underlying particle model. Simulations of three different models are conducted, revealing behaviour that matches the diffusion equation despite limitations on the size of causal set simulated. The effect of spacetime discreteness on the behaviour of massless particles is also investigated. Diffusion equations in both affine time and cosmic time are derived, and it is found that massless particles undergo diffusion and drift in energy. Constraints are placed on the magnitudes of the drift and diffusion parameters by considering the blackbody nature of the CMB. Spacetime discreteness also has a potentially observable effect on photon polarisation. For linearly polarised photons, underlying discreteness is found to cause a rotation in polarisation angle and a suppression in overall polarisation.Comment: PhD Thesis, 145 page

    Energy-momentum diffusion from spacetime discreteness

    Full text link
    We study potentially observable consequences of spatiotemporal discreteness for the motion of massive and massless particles. First we describe some simple intrinsic models for the motion of a massive point particle in a fixed causal set background. At large scales, the microscopic swerves induced by the underlying atomicity manifest themselves as a Lorentz invariant diffusion in energy-momentum governed by a single phenomenological parameter, and we derive in full the corresponding diffusion equation. Inspired by the simplicity of the result, we then derive the most general Lorentz invariant diffusion equation for a massless particle, which turns out to contain two phenomenological parameters describing, respectively, diffusion and drift in the particle's energy. The particles do not leave the light cone however: their worldlines continue to be null geodesics. Finally, we deduce bounds on the drift and diffusion constants for photons from the blackbody nature of the spectrum of the cosmic microwave background radiation.Comment: 13 pages, 4 figures, corrected minor typos and updated to match published versio

    Model based automated cycling ergometer

    Get PDF
    Laboratory testing of cyclists is currently undertaken using turbo trainers or cycle ergometers. The benefits of laboratory testing are the ability to measure performance: (i) more accurately and repeatedly and (ii) under controlled conditions enabling, for example, video analysis to determine joint-specific power production or enable novel instrumentation to be applied to the bicycle, for example, to measure seat interface pressure. Influence of the bicycle fit on torque production have been presented by Irriberri et al(2008) and Peveler et al(2007). Market leading bicycle ergometer manufacturers, such as Lode and Monark, provide feedback on performance metrics including cadence and force measurement. However, neither ergometer provides real time adaptation of bicycle fit to the resolution (i.e. < mm precision) required by elite athletes or allows adjustments to position whilst cycling under simulated road / track conditions. The objective of the research presented in this paper is to demonstrate and provide initial validation results for a novel, fully automated cycle ergometer that incorporates faster, repeatable and more accurate adjustments to bicycle geometry. The ergometer also allows the cyclist to use their preferred handlebars and saddle to accommodate the different cycling disciplines, e.g. track, road, mountain and BMX. The ergometer enables fitting adjustments to be controlled whilst cycling and aims to reduce initial set-up times for different athletes to about 30 seconds as opposed to 30 minutes (required by the end-users current ergometer instantiations). Instrumented cranks have been fitted to monitor the torque and force generated by the crank movements in 2-axes through 360 degrees of crank motion. The ergometer can be coupled (via a user selectable clutch mechanism) to an AC servo motor within the drive chain which supports the application of models of bicycle performance to the ergometer to enable torque versus position versus speed profiles as derived from road and / or track. trials to be readily mapped into the laboratory environmen

    Polarization Diffusion from Spacetime Uncertainty

    Full text link
    A model of Lorentz invariant random fluctuations in photon polarization is presented. The effects are frequency dependent and affect the polarization of photons as they propagate through space. We test for this effect by confronting the model with the latest measurements of polarization of Cosmic Microwave Background (CMB) photons.Comment: 4 pages, 1 figur

    Observations of Extreme ICME Ram Pressure Compressing Mercury's Dayside Magnetosphere to the Surface

    Full text link
    Mercury's magnetosphere is known to be affected by enhanced ram pressures and magnetic fields inside interplanetary coronal mass ejections (ICMEs). Here we report detailed observations of an ICME compressing Mercury's dayside magnetosphere to the surface. A fast CME launched from the Sun on November 29 2013 impacted first MESSENGER, which was orbiting Mercury, on November 30 and later STEREO-A near 1 AU on December 1. Following the ICME impact, MESSENGER remained in the solar wind as the spacecraft traveled inwards and northwards towards Mercury's surface until it reached and passed its closest approach to the planet (at 371 km altitude) without crossing into the magnetosphere. The magnetospheric crossing finally occurred 1 minute before reaching the planet's nightside at 400 km altitude and 84^\circN latitude, indicating the lack of dayside magnetosphere on this orbit. In addition, the peak magnetic field measured by MESSENGER at this time was 40% above the values measured in the orbits just prior to and after the ICME, a consequence of the magnetospheric compression. Using both a proxy method at Mercury and measurements at STEREO-A, we show that the extremely high ram pressure associated with this ICME was more than high enough to collapse Mercury's weak magnetosphere. As a consequence, the ICME plasma likely interacted with Mercury's surface, evidenced by enhanced sodium ions in the exosphere. The collapse of Mercury's dayside magnetosphere has important implications for the habitability of close-in exoplanets around M dwarf stars, as such events may significantly contribute to planetary atmospheric loss in these systems

    Extending the Planetary Mass Function to Earth Mass by Microlensing at Moderately High Magnification

    Full text link
    A measurement by microlensing of the planetary mass function of planets with masses ranging from 5M_E to 10M_J and orbital radii from 0.5 to 10 AU was reported recently. A strategy for extending the mass range down to (1-3)M_E is proposed here. This entails monitoring the peaks of a few tens of microlensing events with moderately high magnifications with 1-2m class telescopes. Planets of a few Earth masses are found to produce deviations of ~ 5% to the peaks of microlensing light curves with durations ~ (0.7-3)hr in events with magnification ~ 100 if the projected separation of the planet lies in the annular region (0.85-1.2)r_E. Similar deviations are produced by Earth mass planets in the annular region (0.95-1.05)r_E. It is possible that sub-Earths could be detected very close to the Einstein ring if they are sufficiently abundant, and also planetary systems with more than one low mass planet.Comment: 12 pages, 20 figures (in press) MNRAS (2013

    Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause

    Get PDF
    Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM ) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause
    corecore