15 research outputs found

    Water level fluctuations and the ecosystem functioning of lakes

    Get PDF
    Hydrological regimes are key drivers of productivity and structure in freshwater ecosystems but are increasingly impacted by human activity. Using 17 published food web models of 13 African lakes as a case study, we explored relationships between seasonal and interannual water level fluctuations and 15 attributes related to ecosystem function. We interpreted our results in the context of Odum's ecosystem maturity hypothesis, as systems with higher magnitude fluctuations may be kept at an earlier maturity stage than those that are relatively stable. The data we compiled indicate that long-term changes in the hydrological regimes of African lakes have already taken place. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression to examine relationships between ecosystem attributes and seven physical characteristics. Of these characteristics, interannual water level fluctuation magnitude was the most frequently retained predictor in the regression models. Our results indicate that interannual water level fluctuations are positively correlated with primary and overall production, but negatively correlated with fish diversity, transfer efficiency, and food chain length. These trends are opposite those expected with increasing ecosystem maturity. Interestingly, we found seasonal water level fluctuations to be positively correlated with biomass. An increase in standing biomass is generally associated with more mature ecosystems. However, we found that less production and biomass occurred at high trophic levels in highly fluctuating compared to relatively stable systems. This synthesis provides evidence that water level fluctuations are a key process influencing ecosystem structure and function in lakes.publishedVersio

    The temperature minimum at tidal fronts

    No full text
    This paper presents a mechanism to explain the observed formation of a surface temperature minimum at tidal fronts in shelf seas. Tidal fronts mark the boundary between water which is kept vertically mixed by fast tidal currents and water which stratifies in summer. The fronts are associated with strong horizontal surface gradients of several water properties, including temperature. In the early studies of tidal fronts, a minimum in surface temperature was occasionally observed between the cool surface waters on the mixed side of the front and the warm surface waters on the stratified side. It was suggested that this was caused by upwelling of deep water at the front. In this paper we describe an alternative and simpler explanation based on the local balance of heating and stirring. The net heat flux into the sea in spring and early summer is greater on the mixed side of the front than on the stratified side. This happens because the heat loss mechanism is dependent on sea surface temperature and stratified waters, having a higher surface temperature, lose more heat. The stratified water near the front therefore has lower heat content (and lower depth-mean temperature) than the mixed water. If some of the stratified water becomes mixed, for example with increased tidal stirring at spring tides, a zone of minimum surface temperature will be formed at the front. A numerical model for the study of this mechanism shows that the temperature minimum at tidal fronts can be explained by the process described above. The minimum appears most clearly at spring tides, but can still be present in a weaker form at neap tides. A further prediction of the model is an increase of the horizontal temperature gradient at spring tides, which is in agreement with observations. An unexpected outcome of the modelling is the prediction of the formation of a marked sea surface temperature minimum, not yet observed, occurring in the autumn and located at the summer position of the tidal front

    Connectivity of marine populations : Open or closed?

    No full text
    Most marine populations are thought to be well connected via long-distance dispersal of larval stages. Eulerian and Lagrangian flow models, coupled with linear mortality estimates, were used to examine this assumption. The findings show that when simple advection models are used, larval exchange rates may be overestimated; such simplistic models fail to account for a decrease of up to nine orders of magnitude in larval concentrations resulting from diffusion and mortality. The alternative process of larval retention near local populations is shown to exist and may be of great importance in the maintenance of marine population structure and management of coastal marine resources.</jats:p

    Water level fluctuations and the ecosystem functioning of lakes

    No full text
    Hydrological regimes are key drivers of productivity and structure in freshwater ecosystems but are increasingly impacted by human activity. Using 17 published food web models of 13 African lakes as a case study, we explored relationships between seasonal and interannual water level fluctuations and 15 attributes related to ecosystem function. We interpreted our results in the context of Odum's ecosystem maturity hypothesis, as systems with higher magnitude fluctuations may be kept at an earlier maturity stage than those that are relatively stable. The data we compiled indicate that long-term changes in the hydrological regimes of African lakes have already taken place. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression to examine relationships between ecosystem attributes and seven physical characteristics. Of these characteristics, interannual water level fluctuation magnitude was the most frequently retained predictor in the regression models. Our results indicate that interannual water level fluctuations are positively correlated with primary and overall production, but negatively correlated with fish diversity, transfer efficiency, and food chain length. These trends are opposite those expected with increasing ecosystem maturity. Interestingly, we found seasonal water level fluctuations to be positively correlated with biomass. An increase in standing biomass is generally associated with more mature ecosystems. However, we found that less production and biomass occurred at high trophic levels in highly fluctuating compared to relatively stable systems. This synthesis provides evidence that water level fluctuations are a key process influencing ecosystem structure and function in lakes
    corecore