49 research outputs found

    Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture

    Get PDF
    Halloysite is aluminosilicate clay with a hollow tubular structure with nanoscale internal and external diameters. Assessment of halloysite biocompatibility has gained importance in view of its potential application in oral drug delivery. To investigate the effect of halloysite nanotubes on an in vitro model of the large intestine, Caco-2/HT29-MTX cells in monolayer co-culture were exposed to nanotubes for toxicity tests and proteomic analysis. Results indicate that halloysite exhibits a high degree of biocompatibility characterized by an absence of cytotoxicity, in spite of elevated pro-inflammatory cytokine release. Exposure-specific changes in expression were observed among 4081 proteins analyzed. Bioinformatic analysis of differentially expressed protein profiles suggest that halloysite stimulates processes related to cell growth and proliferation, subtle responses to cell infection, irritation and injury, enhanced antioxidant capability, and an overall adaptive response to exposure. These potentially relevant functional effects warrant further investigation in in vivo models and suggest that chronic or bolus occupational exposure to halloysite nanotubes may have unintended outcomes

    Cytocompatibility and Uptake of Halloysite Clay Nanotubes

    Get PDF
    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes

    Energy spectra of the ocean's internal wave field: theory and observations

    Full text link
    The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the observed deviations from it are shown to form a pattern consistent with the predictions of wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum constitutes an {\it exact} steady state solution of the corresponding kinetic equation.Comment: 4 pages, one color figur

    Halloysite clay nanotubes as carriers for resveratrol delivery to tumoral cells

    Get PDF
    none3Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ-potential measurements are used to study the drug loading/release and for monitoring the nanotube layer-by-layer (LbL) coating with polyelectrolytes for further release control. Resveratrol-loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self-toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF-7) as function of the resveratrol-loaded nanotubes concentration and incubation time indicate that drug-loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis.Vergaro, Viviana; Lvov, Yuri M; Leporatti, StefanoVergaro, Viviana; Lvov, Yuri M; Leporatti, Stefan

    Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle

    No full text
    Selective fatty acid hydrophobization of the inner surface of tubule halloysite clay is demonstrated. Aqueous phosphonic acid was found to bind to alumina sites at the tube lumen and did not bind the tube's outer siloxane surface. The bonding was characterized with solid-state nuclear magnetic resonance (<sup>29</sup>Si, <sup>13</sup>C, <sup>31</sup>P NMR), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy. NMR and FTIR spectroscopy of selectively modified tubes proved binding of octadecylphosphonic acid within the halloysite lumen through bidentate and tridentate P–O–Al linkage. Selective modification of the halloysite clay lumen creates an inorganic micelle-like architecture with a hydrophobic aliphatic chain core and a hydrophilic silicate shell. An enhanced capacity for adsorption of the modified halloysite toward hydrophobic derivatives of ferrocene was shown. This demonstrates that the different inner and outer surface chemistry of clay nanotubes can be used for selective modification, enabling different applications from water purification to drug immobilization and controlled release
    corecore