1,073 research outputs found

    Effect of Feed Additive on the Mineral Composition of Quail Blood

    Get PDF
    Blood serum microelement composition of egg-laying quails raised in the urban environment is of great scientific and practical interest. This study was carried out to evaluate the effect of a feed additive on the mineral composition of quail blood. To stimulate metabolism and egg productivity, quails of the experimental group were fed with a supplement containing magnesium, vitamins B, L-carnitine at the dose of 0.25 ml/liter of water for 120 days. At the age of 120 days, the blood serum micronutrient composition of experimental (10) and control (10) birds were measured by mass spectrometry followed by mathematical processing of the data obtained under laboratory conditions. Figuratively, all studied elements are divided into 4 groups i.e. macronutrients (calcium, phosphorus, potassium, sodium, and magnesium); essential elements (iron, copper, zinc, selenium, molybdenum, chromium, manganese, cobalt); roughly essential (silicon, boron, arsenic, lithium, and nickel) and roughly toxic (aluminum, titanium, lead, mercury, antimony, and cadmium). Results of the study revealed that the blood serum of a control group have a wide range of studied mineral content components while in the experimental group, egg-laying quails showed a decrease in phosphorus (18.30%), iron (12.29%), copper (6.76%), zinc (6.92%), molybdenum (18.80%), arsenic (14.00%) and cadmium (12.50%), as well as increases the concentration of magnesium (5.85%), manganese (28.31%), nickel (39.40%), lithium (8.32%), titanium (11.96%), lead (16.13%), mercury (13.34%) and antimony (14.29%) relative to the control group. The data obtained indicate that the feed additive had an ambiguous effect on the metabolism and led to changes in the concentration of certain trace elements in the blood serum, which in turn influenced the levels of other elements. The higher content of Ni, Li, Ti, Pb, Hg, and Sb in the blood serum of experimental laying quail stimulated the activity of enzymes, metabolic processes, which contributed to an earlier start of egg-laying

    Hypoxia in atherogenesis

    Get PDF
    The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1a, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies

    Eigen-transitions in cantilever cylindrical shells subjected to vertical edge loads

    Get PDF
    A thin cantilever cylindrical shell subjected to a transverse shear force at the free end can experience two distinct modes of buckling, depending on its relative thickness and length. If the former parameter is fixed then a short cylinder buckles in a diffuse manner, while the eigenmodal deformation of a moderately long shell is localised, both axially and circumferentially, near its fixed end. Donnelltype buckling equations for cylindrical shells are here coupled with a non-symmetric membrane basic state to produce a linear boundary-value problem that is shown to capture the transition between the aforementioned instability modes. The main interest lies in exploring the approximate asymptotic separation of the independent variables in the corresponding stability equations, when the eigen-deformation is doubly localised. Comparisons with direct numerical simulations of the full buckling problem provide further insight into the accuracy and limitations of our approximations

    Iron force constants of bridgmanite at high pressure: Implications for iron isotope fractionation in the deep mantle

    Get PDF
    The isotopic compositions of iron in major mantle minerals may record chemical exchange between deep-Earth reservoirs as a result of early differentiation and ongoing plate tectonics processes. Bridgmanite (Bdg), the most abundant mineral in the Earth’s lower mantle, can incorporate not only Al but also Fe with different oxidation states and spin states, which in turn can influence the distribution of Fe isotopes between Bdg and ferropericlase (Fp) and between the lower mantle and the core. In this study, we combined first-principles calculations with high-pressure nuclear resonant inelastic X-ray scattering measurements to evaluate the effects of Fe site occupancy, valence, and spin states at lower-mantle conditions on the reduced Fe partition function ratio (β-factor) of Bdg. Our results show that the spin transition of octahedral-site (B-site) Fe3+ in Bdg under mid-lower-mantle conditions generates a +0.09‰ increase in its β-factor, which is the most significant effect compared to Fe site occupancy and valence. Fe2+-bearing Bdg varieties have smaller β-factors relative to Fe3+-bearing varieties, especially those containing B-site Fe3+. Our models suggest that Fe isotopic fractionation between Bdg and Fp is only significant in the lowermost mantle due to the occurrence of low-spin Fe2+ in Fp. Assuming early segregation of an iron core from a deep magma ocean, we find that neither core formation nor magma ocean crystallization would have resulted in resolvable Fe isotope fractionation. In contrast, Fe isotopic fractionation between low-spin Fe3+-bearing Bdg/Fe2+-bearing Fp and metallic iron at the core-mantle boundary may have enriched the lowermost mantle in heavy Fe isotopes by up to +0.20‰

    On the infrared behaviour of 3d Chern-Simons theories in N=2 superspace

    Full text link
    We discuss the problem of infrared divergences in the N=2 superspace approach to classically marginal three-dimensional Chern-Simons-matter theories. Considering the specific case of ABJM theory, we describe the origin of such divergences and offer a prescription to eliminate them by introducing non-trivial gauge-fixing terms in the action. We also comment on the extension of our procedure to higher loop order and to general three-dimensional Chern-Simons-matter models.Comment: 26 pages, 6 figures, JHEP3; v2: minor corrections and references added; v3: introduction expanded, presentation of section 3.3.1 improved, references added, version to appear in JHE

    Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Get PDF
    The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton

    Acquisition of aluminium tolerance by modification of a single gene in barley

    Get PDF
    Originating from the Fertile Crescent in the Middle East, barley has now been cultivated widely on different soil types including acid soils, where aluminium toxicity is a major limiting factor. Here we show that the adaptation of barley to acid soils is achieved by the modification of a single gene (HvAACT1) encoding a citrate transporter. We find that the primary function of this protein is to release citrate from the root pericycle cells to the xylem to facilitate the translocation of iron from roots to shoots. However, a 1-kb insertion in the upstream of the HvAACT1 coding region occurring only in the Al-tolerant accessions, enhances its expression and alters the location of expression to the root tips. The altered HvAACT1 has an important role in detoxifying aluminium by secreting citrate to the rhizosphere. Thus, the insertion of a 1-kb sequence in the HvAACT1 upstream enables barley to adapt to acidic soils

    Epidermal growth factor receptor kinase domain mutations are rare in salivary gland carcinomas

    Get PDF
    Activating mutations within the epidermal growth factor (EGFR) tyrosine kinase domain identify non-small cell lung cancer patients with improved clinical response to tyrosine kinase inhibitor therapy. Recently, we identified two EGFR mutations in a cohort of 25 salivary gland carcinomas (SGCs) by screening the tumour samples for the both most common hotspot mutations in exons 19 and 21 by allele-specific PCR. Here, we present a comprehensive sequencing analysis of the entire critical EGFR tyrosine kinase domain in 65 SGC of the main histopathological types. We found EGFR mutations in the tyrosine kinase domain to be a rare event in SGCs. No additional mutations other than the two known exon 19 deletions (c.2235_2249del15) in a mucoepidermoid carcinoma and an adenoid cystic carcinoma have been detected. Other putative predictive markers for EGFR-targeted therapy in SGCs might be relevant and should be investigated

    Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia

    Get PDF
    Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = −0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = −0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts
    • …
    corecore