4 research outputs found
Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application
It was prepared the graphene oxide (GO) sheets by suspension of GO in ultrapure deionized water or in Pluronic F-68 using a ultrasonicator bath. Total characterization of GO sheets was carried out. The results on suspension of GO in water showed excellent growth and cell adhesion. GO/Pluronic F-68 platform for the growth and adhesion of adipose-derived stem cells (ASCs) that exhibits excellent properties for these processes. GO in water suspension exhibited an inhibition of the cell growth over 5 mu g/mL In vivo study with GO suspended in water (100 g/mL) on Fisher 344 rats via i.p. administration showed low toxicity. Despite GO particle accumulates in the intraperitoneal cavity, this fact did not interfere with the final absorption of GO. The AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels (liver function) did not differ statistically in all experimental groups. Also, creatinine and urea levels (renal function) did not differ statistically in all experimental groups. Taking together, the data suggest the great potential of graphene oxide sheets as platform to ACSs, as well as, new material for treatment several urological diseases6174th International Conference on Safe Production and Use of Nanomaterials (Nanosafe
The Action of Platelet-Rich Plasma (PRP) in Cardiovascular Disease Treatment
Atherosclerosis, or coronary artery disease, is an inflammatory disorder capable of affecting large arteries. It is also the main cause of cardiovascular disease and stroke, and its main causative factors lie on lipid accumulation in, and inflammation of, large arteries. The aim of the current study is to investigate the need of conducting better therapeutic assessments in more clinically relevant animal models of ischemic stroke, as well as the action of platelet rich plasma in modulating inflammatory processes in cardiac injury cases
Fibrin network architectures in pure platelet-rich plasma as characterized by fiber radius and correlated with clotting time
Fibrin networks are obtained through activation of platelet-rich plasma (PRP) for use in tissue regeneration. The importance of fibrin networks relies on mediation of release of growth factors, proliferation of tissue cells and rheological properties of the fibrin gels. Activation of PRP usually involves the decomposition of fibrinogen by agonists, in a wide range of concentrations. Therefore fibrin networks with a large structural diversity are formed, making comparative evaluations difficult. In order to standardize the fibrin networks, we used the statistical techniques central composite rotatable design and response-surface analysis, to correlate the radius of the fibers with the ratios between the agonists (autologous serum/calcium chloride) and agonist/PRP. From an individual and interactive analysis of the variables, architectures characterized by thick, medium and thin fibers were delineated on the response-surface. Furthermore, the architectures were correlated with coagulation time. This approach is valuable for standardizing the PRP preparation for clinical applications2519671977FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã
Effect Of Human Adipose Tissue Mesenchymal Stem Cells On The Regeneration Of Ovine Articular Cartilage.
Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model