1,023 research outputs found

    Approaching Space Time Through Velocity in Doubly Special Relativity

    Full text link
    We discuss the definition of velocity as dE/dp, where E,p are the energy and momentum of a particle, in Doubly Special Relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles can not be derived.Comment: 11 pages, no figures, minor changes, references added, final version to appear in PR

    Tertiary creep in concrete

    Get PDF
    Time dependent concrete fracture is simulated using a rate type creep model coupled with a discrete concrete model. The numerical study uses experimental data, of various tests, three point bending, relaxation, tensile, performed on concrete. This contribution demonstrates the capability of the model to capture the time dependent fracture behavior of concrete, and predicts the critical time of failure

    Modified Special Relativity on a fluctuating spacetime

    Get PDF
    It was recently proposed that deformations of the relativistic symmetry, as those considered in Deformed Special Relativity (DSR), can be seen as the outcome of a measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations [1,2]. In this paper we explicitly consider the case of a spacetime described by a flat metric endowed with stochastic fluctuations and, for a free particle, we show that DSR-like nonlinear relations between the spaces of the measured and classical momenta, can result from the average of the stochastic fluctuations over a scale set be the de Broglie wavelength of the particle. As illustrative examples we consider explicitly the averaging procedure for some simple stochastic processes and discuss the physical implications of our results.Comment: 7 pages, no figure

    Deformed Special Relativity as an effective theory of measurements on quantum gravitational backgrounds

    Full text link
    In this article we elaborate on a recently proposed interpretation of DSR as an effective measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations. We provide several heuristic arguments to explain how such a new theory can emerge and discuss the possible observational consequences of this framework.Comment: 11 pages, no figure

    Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains

    Get PDF
    Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabricatio

    Advancement of a Soil Parameters Geodatabase for the Modeling Assessment of Conservation Practice Outcomes in the United States

    Get PDF
    US-ModSoilParms-TEMPLE is a database composed of a set of geographic databases functionally storing soil-spatial units and soil hydraulic, physical, and chemical parameters for three agriculture management simulation models, SWAT, APEX, and ALMANAC. This paper introduces the updated US-ModSoilParms-TEMPLE, which covers the entire United States and is organized as a framework of 22 nested and hydrologically-ordered regional geographic databases with internal spatial segmentation drainage-defined at a conveniently manageable tile (Watershed Boundary Dataset’s, WBD, 8-digit Subbasin) level. Spatial features are stored in multiple formats (raster and vector) and resolutions (10-meter and 30-meter), while being in direct relationship with the table of attributes storing the models’ parameters. A significant number of former parameter voids, determined by the local incompleteness of the source datasets, were filled using a methodology leveraging upon the hierarchy of the Soil Taxonomy information and the geographic location of the gaps. The functionality of each geographic database was extended by adding customized tools, which streamline the incorporation into geoprocessing workflows, the aggregation and extraction of data sets, and finally the export to other model support software user environments. These tools are attached and conveniently distributed along with detailed metadata documentation within each of the developed regional geographic databases. The system hosting this framework is developed using a proprietary software format (ESRI® File Geodatabase), however, a companion version of the framework of 8-digit tiles is also developed and provided using openly accessible formats. The experience shared in this paper might help other efforts in developing hydrology-oriented geographical databases

    A Soil Parameters Geodatabase for the Modeling Assessment of Agricultural Conservation Practices Effects in the United States

    Get PDF
    Soil parameters for hydrology modeling in cropland dominated areas, from the regional to local scale, are part of critical biophysical information whose deficiency may increase the uncertainty of simulated conservation effects and predicting potential. Despite this importance, soil physical and hydraulic parameters lack common, wide-coverage repositories combined to digital maps as required by various hydrology-based agricultural water quality models. This paper describes the construction of a geoprocessing workflow and the resultant hydrology-structured soil hydraulic, physical, and chemical parameters geographic database for the entire United States, named US-SOILM-CEAP. This database is designed to store a-priori values for a suit of models, such as SWAT (Soil and Water Assessment Tool), APEX (Agricultural Policy Environmental EXtender) and ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria), which are commonly used for the across scale assessment of agricultural hydrology and conservation practice scenarios. The Soil Survey Geographic (SSURGO) database developed by the U.S. Department of Agriculture provided the main source data for this development. Additional spatial information, a geographic information system platform and Python computer programming language code were used to create hydrology-based tile coverage of the areal soil units linked to the specific and detailed attributes required by each model. The created repository adds value to the source soil survey data, while maintaining and extending the detailed information necessary for the across scale and combined application of the models. Ultimately, our multi-model database provides a comprehensive product achieving joined informational-mapping-geoprocessing functionality with the explicit maintenance of the original conceptual links between soil series and composing soil layers, allowing for efficient data retrieval, analysis and service as input for modeling conservation effects

    Redefining the Axion Window

    Full text link
    • …
    corecore