17 research outputs found

    Revival of phage therapy

    No full text

    Complete genome sequences of two T4-like Escherichia coli bacteriophages

    No full text
    Bacteriophages and their proteins have potential applications in biotechnology for the detection and control of bacterial diseases. Here, we describe the sequencing and genome annotations of two strictly virulent Escherichia coli bacteriophages that may be explored for biocontrol strategies and to expand the understanding of phage-host interactions

    Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation

    No full text
    Microbes have the unique ability to acquire immunological memories from mobile genetic invaders to protect themselves from predation. To confer CRISPR resistance, new spacers need to be compatible with a targeting requirement in the invader's DNA called the protospacer adjacent motif (PAM). Many CRISPR systems encode Cas4 proteins to ensure new spacers are integrated that meet this targeting prerequisite. Here we report that a gene fusion between cas4 and cas1 from the Geobacter sulfurreducens I-U CRISPR–Cas system is capable of introducing functional spacers carrying interference proficient TTN PAM sequences at much higher frequencies than unfused Cas4 adaptation modules. Mutations of Cas4-domain catalytic residues resulted in dramatically decreased naïve and primed spacer acquisition, and a loss of PAM selectivity showing that the Cas4 domain controls Cas1 activity. We propose the fusion gene evolved to drive the acquisition of only PAM-compatible spacers to optimize CRISPR interference

    Saturation-Transfer Difference (STD) NMR - A simple and fast method for ligand screening and characterization of protein binding

    No full text
    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein−ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor and only using small quantities of nonlabeled macromolecule. Moreover, the attractiveness of this experiment is also extendable to the classroom. In the context of a practical NMR class, this experiment is ideal to illustrate some fundamental NMR concepts, such as the nuclear Overhauser effect and relaxation in a multidisciplinary context, bridging chemistry and biochemistry with a taste of medicinal chemistry.We use the readily available human serum albumin (HSA), 6-d,l-methyl-tryptophan (6-CH3-Trp), and 7- d,l-methyl-tryptophan (7-CH3-Trp) to introduce the STD-NMR experiment and to illustrate its applicability for ligand screening, mapping of binding moieties, and determination of the dissociation constant, in a context that can be explored or adapted to the student’s course level and topic (chemistry or biochemistry). We also cover the most important theoretical aspects of the STD experiment, calling attention to some of its limitations and drawbacks without a complex theoretical approach

    Prophages are associated with extensive, tolerated CRISPR-Cas auto-immunity

    No full text
    CRISPR–Cas systems require discriminating self from non-self DNA during adaptation and interference. Yet, multiple cases have been reported of bacteria containing self-targeting spacers (STS), i.e. CRISPR spacers targeting protospacers on the same genome. STS has been suggested to reflect potential auto-immunity as an unwanted side effect of CRISPR–Cas defense, or a regulatory mechanism for gene expression. Here we investigated the incidence, distribution, and evasion of STS in over 100 000 bacterial genomes. We found STS in all CRISPR–Cas types and in one fifth of all CRISPR-carrying bacteria. Notably, up to 40% of I-B and I-F CRISPR–Cas systems contained STS. We observed that STS-containing genomes almost always carry a prophage and that STS map to prophage regions in more than half of the cases. Despite carrying STS, genetic deterioration of CRISPR–Cas systems appears to be rare, suggesting a level of escape from the potentially deleterious effects of STS by other mechanisms such as anti-CRISPR proteins and CRISPR target mutations. We propose a scenario where it is common to acquire an STS against a prophage, and this may trigger more extensive STS buildup by primed spacer acquisition in type I systems, without detrimental autoimmunity effects as mechanisms of auto-immunity evasion create tolerance to STS-targeted prophages

    Structural basis for broad anti-phage immunity by DISARM

    No full text
    In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic. These structures reveal that DrmAB core complex is autoinhibited by a trigger loop (TL) within DrmA and binding to DNA substrates containing a 5’ overhang dislodges the TL, initiating a long-range structural rearrangement for DrmAB activation. Together with structure-guided in vivo studies, our work provides insights into the mechanism of phage DNA recognition and specific activation of this widespread antiviral defense system

    Incorporation of a synthetic amino acid into dCas9 improves control of gene silencing

    No full text
    The CRISPR-Cas9 nuclease has been repurposed as a tool for gene repression (CRISPRi). This catalytically dead Cas9 (dCas9) variant inhibits transcription by blocking either initiation or elongation by the RNA polymerase complex. Conditional control of dCas9-mediated repression has been achieved with inducible promoters that regulate the expression of the dcas9 gene. However, as dCas9-mediated gene silencing is very efficient, even slightly leaky dcas9 expression leads to significant background levels of repression of the target gene. In this study, we report on the development of optimized control of dCas9-mediated silencing through additional regulation at the translation level. We have introduced the TAG stop codon in the dcas9 gene in order to insert a synthetic amino acid, l-biphenylalanine (BipA), at a permissive site in the dCas9 protein. In the absence of BipA, a nonfunctional, truncated dCas9 is produced, but when BipA is present, the TAG codon is translated resulting in a functional, full-length dCas9 protein. This synthetic, BipA-containing dCas9 variant (dCas9-BipA) could still fully repress gene transcription. Comparison of silencing mediated by dCas9 to dCas9-BipA revealed a 14-fold reduction in background repression by the latter system. The here developed proof-of-principle system thus reduces unwanted background levels of gene silencing, allowing for tight and timed control of target gene expression

    Class I DISARM provides anti-phage and anti-conjugation activity by unmethylated DNA recognition

    No full text
    Bacteriophages impose a strong evolutionary pressure on microbes for the development of mechanisms of survival. Multiple new mechanisms of innate defense have been described recently, with the molecular mechanism of most of them remaining uncharacterized. Here, we show that a Class 1 DISARM (defense island system associated with restriction-modification) system from Serratia sp. provides broad protection from double-stranded DNA phages, and drives a population of single-stranded phages to extinction. We identify that protection is not abolished by deletion of individual DISARM genes and that the absence of methylase genes drmMI and drmMII does not result in autoimmunity. In addition to antiphage activity we also observe that DISARM limits conjugation, and this activity is linked to the number of methylase cognate sites in the plasmid. Overall, we show that Class 1 DISARM provides robust anti-phage and anti-plasmid protection mediated primarily by drmA and drmB, which provide resistance to invading nucleic acids using a mechanism enhanced by the recognition of unmethylated cognate sites of the two methylases drmMI and drmMII

    Selection of novel peptides homing the 4T1 cell line: exploring alternative targets for triple negative breast cancer

    No full text
    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy

    Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts

    Get PDF
    An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the key initial infection cycle step. Phages are added to cell envelopes, adsorbed phages are isolated through gel electrophoresis, after which adsorbed phage DNA is sequenced and compared with the full virome. Here, we show that AdsorpSeq allows for separation of phages based on receptor-adsorbing capabilities. Next, we applied AdsorpSeq to identify phages in a wastewater virome that adsorb to cell envelopes of nine bacteria, including important pathogens. We detected 26 adsorbed phages including common and rare members of the virome, a minority being related to previously characterized phages. We conclude that AdsorpSeq is an effective new tool for rapid characterization of environmental phage adsorption, with a proof-of-principle application to Gram-negative host cell envelopes
    corecore