27 research outputs found

    The first synapse in vision in the aging mouse retina

    Get PDF
    Vision is our primary sense, and maintaining it throughout our lifespan is crucial for our well-being. However, the retina, which initiates vision, suffers from an age-related, irreversible functional decline. What causes this functional decline, and how it might be treated, is still unclear. Synapses are the functional hub for signal transmission between neurons, and studies have shown that aging is widely associated with synaptic dysfunction. In this study, we examined the first synapse of the visual system – the rod and cone photoreceptor ribbon synapse – in the mouse retina using light and electron microscopy at 2–3 months, ~1 year, and >2 years of age. We asked, whether age-related changes in key synaptic components might be a driver of synaptic dysfunction and ultimately age-related functional decline during normal aging. We found sprouting of horizontal and bipolar cells, formation of ectopic photoreceptor ribbon synapses, and a decrease in the number of rod photoreceptors and photoreceptor ribbon synapses in the aged retina. However, the majority of the photoreceptors did not show obvious changes in the structural components and protein composition of their ribbon synapses. Noteworthy is the increase in mitochondrial size in rod photoreceptor terminals in the aged retina

    ESA's Space-based Doppler Wind Lidar Mission Aeolus - First Wind and Aerosol Product Assessment Results

    Get PDF
    The European Space Agency (ESA) wind mission, Aeolus, hosts the first space-based Doppler Wind Lidar (DWL) world-wide. The primary mission objective is to demonstrate the DWL technique for measuring wind profiles from space, intended for assimilation in Numerical Weather Prediction (NWP) models. The wind observations will also be used to advance atmospheric dynamics research and for evaluation of climate models. Mission spinoff products are profiles of cloud and aerosol optical properties. Aeolus was launched on 22 August 2018, and the Atmospheric LAser Doppler INstrument (Aladin) instrument switch-on was completed with first high energy output in wind mode on 4 September 2018. The on-ground data processing facility worked excellent, allowing L2 product output in near-real-time from the start of the mission. First results from the wind profile product (L2B) assessment show that the winds are of very high quality, with random errors in the free Troposphere within (cloud/aerosol backscatter winds: 2.1 m/s) and larger (molecular backscatter winds: 4.3 m/s) than the requirements (2.5 m/s), but still allowing significant positive impact in first preliminary NWP impact experiments. The higher than expected random errors at the time of writing are amongst others due to a lower instrument outand input photon budget than designed. The instrument calibration is working well, and some of the data processing steps are currently being refined to allow to fully correct instrument alignment related drifts and elevated detector dark currents causing biases in the first data product version. The optical properties spin-off product (L2A) is being compared e.g. to NWP model clouds, air quality model forecasts, and collocated ground-based observations. Features including optically thick and thin particle and hydrometeor layers are clearly identified and are being validated

    AGO Recommendations for the surgical therapy of breast cancer: update 2022

    Get PDF
    The recommendations of the AGO Breast Committee on the surgical therapy of breast cancer were last updated in March 2022 (www.ago-online.de). Since surgical therapy is one of several partial steps in the treatment of breast cancer, extensive diagnostic and oncological expertise of a breast surgeon and good interdisciplinary cooperation with diagnostic radiologists is of great importance. The most important changes concern localization techniques, resection margins, axillary management in the neoadjuvant setting and the evaluation of the meshes in reconstructive surgery. Based on meta-analyses of randomized studies, the level of recommendation of an intraoperative breast ultrasound for the localization of non-palpable lesions was elevated to “++”. Thus, the technique is considered to be equivalent to wire localization, provided that it is a lesion which can be well represented by sonography, the surgeon has extensive experience in breast ultrasound and has access to a suitable ultrasound device during the operation. In invasive breast cancer, the aim is to reach negative resection margins (“no tumor on ink”), regardless of whether an extensive intraductal component is present or not. Oncoplastic operations can also replace a mastectomy in selected cases due to the large number of existing techniques, and are equivalent to segmental resection in terms of oncological safety at comparable rates of complications. Sentinel node excision is recommended for patients with cN0 status receiving neoadjuvant chemotherapy after completion of chemotherapy. Minimally invasive biopsy is recommended for initially suspect lymph nodes. After neoadjuvant chemotherapy, patients with initially 1 – 3 suspicious lymph nodes and a good response (ycN0) can receive the targeted axillary dissection and the axillary dissection as equivalent options

    Initial Assessment of the Performance of the First Wind Lidar in Space on Aeolus

    Get PDF
    Soon after its successful launch in August 2018, the spaceborne wind lidar ALADIN (Atmospheric LAser Doppler INstrument) on-board ESA's Earth Explorer satellite Aeolus has demonstrated to provide atmospheric wind profiles on a global scale. Being the first ever Doppler Wind Lidar (DWL) instrument in space, ALADIN contributes to the improvement in numerical weather prediction (NWP) by measuring one component of the horizontal wind vector. The performance of the ALADIN instrument was assessed by a team from ESA, DLR, industry, and NWP centers during the first months of operation. The current knowledge about the main contributors to the random and systematic errors from the instrument will be discussed. First validation results from an airborne campaign with two wind lidars on-board the DLR Falcon aircraft will be shown

    Lack of a Retinal Phenotype in a Syne-2/Nesprin-2 Knockout Mouse Model

    Get PDF
    Syne-2 (also known as Nesprin-2) is a member of a family of proteins that are found primarily in the outer nuclear membrane, as well as other subcellular compartments. Syne-2 contains a C-terminal KASH transmembrane domain and is part of a protein network that associates the nuclear envelope to the cytoskeleton via the binding to actin filaments. Syne-2 plays a role in nuclear migration, nuclear positioning during retinal development, and in ciliogenesis. In a previous study, we showed a connection between Syne-2 and the multifunctional scaffold protein Pericentrin (Pcnt). The elimination of the interaction of Syne-2 and Pcnt showed defects in nuclear migration and the formation of outer segments during retinal development, as well as disturbances in centrosomal migration at the beginning of ciliogenesis in general. In this study, the Syne-2 KO mouse model Nesprin-2oABD (Syne-2(tm1Ngl), MGI) with special attention to Pcnt and ciliogenesis was analyzed. We show reduced expression of Syne-2 in the retina of the Syne-2 KO mouse but found no significant structural-and only a minor functional-phenotype. For the first time, detailed expression analyses showed an expression of a Syne-2 protein larger than 400 kDa (similar to 750 kDa) in the Syne-2/Nesprin-2 KO mouse. In conclusion, the lack of an overt phenotype in Syne-2/Nesprin-2 KO mice suggests the usage of alternative translational start sites, producing Syne-2 splice variants with an intact Pcnt interaction site. Nevertheless, deletion of the actin-binding site in the Syne-2/Nesprin-2 KO mouse revealed a high variability in scotopic oscillatory potentials assuming a novel function of Syne-2 in synchronizing inner retinal processes

    Cell Types and Synapses Expressing the SNARE Complex Regulating Proteins Complexin 1 and Complexin 2 in Mammalian Retina

    No full text
    Complexins (Cplxs) 1 to 4 are components of the presynaptic compartment of chemical synapses where they regulate important steps in synaptic vesicle exocytosis. In the retina, all four Cplxs are present, and while we know a lot about Cplxs 3 and 4, little is known about Cplxs 1 and 2. Here, we performed in situ hybridization experiments and bioinformatics and exploited Cplx 1 and Cplx 2 single-knockout mice combined with immunocytochemistry and light microscopy to characterize in detail the cell type and synapse-specific distribution of Cplx 1 and Cplx 2. We found that Cplx 2 and not Cplx 1 is the main isoform expressed in normal and displaced amacrine cells and ganglion cells in mouse retinae and that amacrine cells seem to operate with a single Cplx isoform at their conventional chemical synapses. Surprising was the finding that retinal function, determined with electroretinographic recordings, was altered in Cplx 1 but not Cplx 2 single-knockout mice. In summary, the results provide an important basis for future studies on the function of Cplxs 1 and 2 in the processing of visual signals in the mammalian retina

    Light-dependent regulation of neurotransmitter release from rod photoreceptor ribbon synapses involves an interplay of Complexin 4 and Transducin with the SNARE complex

    Get PDF
    Adaptation of photoreceptor sensitivity to varying light intensities is a fundamental requirement for retinal function and vision. Adaptive mechanisms in signal transduction are well described, but little is known about the mechanisms that adapt the photoreceptor synapse to changing light intensities. The SNARE complex regulators Complexin 3 and Complexin 4 have been proposed to be involved in synaptic light adaptation by limiting synaptic vesicle recruitment and fusion. How this Complexin effect is exerted is unknown. Focusing on rod photoreceptors, we established Complexin 4 as the predominant Complexin in the light-dependent regulation of neurotransmitter release. The number of readily releasable synaptic vesicles is significantly smaller in light than in dark at wildtype compared to Complexin 4 deficient rod photoreceptor ribbon synapses. Electrophysiology indicates that Complexin 4 reduces or clamps Ca2+-dependent sustained synaptic vesicle release, thereby enhancing light signaling at the synapse. Complexin 4 deficiency increased synaptic vesicle release and desensitized light signaling. In a quantitative proteomic screen, we identified Transducin as an interactor of the Complexin 4-SNARE complex. Our results provide evidence for a presynaptic interplay of both Complexin 4 and Transducin with the SNARE complex, an interplay that may facilitate the adaptation of synaptic transmission to light at rod photoreceptor ribbon synapses

    Table_1_Light-dependent regulation of neurotransmitter release from rod photoreceptor ribbon synapses involves an interplay of Complexin 4 and Transducin with the SNARE complex.XLSX

    No full text
    Adaptation of photoreceptor sensitivity to varying light intensities is a fundamental requirement for retinal function and vision. Adaptive mechanisms in signal transduction are well described, but little is known about the mechanisms that adapt the photoreceptor synapse to changing light intensities. The SNARE complex regulators Complexin 3 and Complexin 4 have been proposed to be involved in synaptic light adaptation by limiting synaptic vesicle recruitment and fusion. How this Complexin effect is exerted is unknown. Focusing on rod photoreceptors, we established Complexin 4 as the predominant Complexin in the light-dependent regulation of neurotransmitter release. The number of readily releasable synaptic vesicles is significantly smaller in light than in dark at wildtype compared to Complexin 4 deficient rod photoreceptor ribbon synapses. Electrophysiology indicates that Complexin 4 reduces or clamps Ca2+-dependent sustained synaptic vesicle release, thereby enhancing light signaling at the synapse. Complexin 4 deficiency increased synaptic vesicle release and desensitized light signaling. In a quantitative proteomic screen, we identified Transducin as an interactor of the Complexin 4-SNARE complex. Our results provide evidence for a presynaptic interplay of both Complexin 4 and Transducin with the SNARE complex, an interplay that may facilitate the adaptation of synaptic transmission to light at rod photoreceptor ribbon synapses.</p
    corecore