1,165 research outputs found
Optical processing for landmark identification
A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced
Low-Level Vibrations Retain Bone Marrow's Osteogenic Potential and Augment Recovery of Trabecular Bone during Reambulation
Mechanical disuse will bias bone marrow stromal cells towards adipogenesis, ultimately compromising the regenerative capacity of the stem cell pool and impeding the rapid and full recovery of bone morphology. Here, it was tested whether brief daily exposure to high-frequency, low-magnitude vibrations can preserve the marrow environment during disuse and enhance the initiation of tissue recovery upon reambulation. Male C57BL/6J mice were subjected to hindlimb unloading (HU, n = 24), HU interrupted by weight-bearing for 15 min/d (HU+SHAM, n = 24), HU interrupted by low-level whole body vibrations (0.2 g, 90 Hz) for 15 min/d (HU+VIB, n = 24), or served as age-matched controls (AC, n = 24). Following 3 w of disuse, half of the mice in each group were released for 3 w of reambulation (RA), while the others were sacrificed. RA+VIB mice continued to receive vibrations for 15 min/d while RA+SHAM continued to receive sham loading. After disuse, HU+VIB mice had a 30% greater osteogenic marrow stromal cell population, 30% smaller osteoclast surface, 76% greater osteoblast surface but similar trabecular bone volume fraction compared to HU. After 3 w of reambulation, trabecular bone of RA+VIB mice had a 30% greater bone volume fraction, 51% greater marrow osteoprogenitor population, 83% greater osteoblast surfaces, 59% greater bone formation rates, and a 235% greater ratio of bone lining osteoblasts to marrow adipocytes than RA mice. A subsequent experiment indicated that receiving the mechanical intervention only during disuse, rather than only during reambulation, was more effective in altering trabecular morphology. These data indicate that the osteogenic potential of bone marrow cells is retained by low-magnitude vibrations during disuse, an attribute which may have contributed to an enhanced recovery of bone morphology during reambulation
New Way to Produce Dense Double-Antikaonic Dibaryon System, \bar{K}\bar{K} NN, through Lambda(1405)-Doorway Sticking in p+p Collisions
A recent successful observation of a dense and deeply bound \bar{K} nuclear
system, K^-pp, in the p + p \rightarrow K^+ + K^-pp reaction in a DISTO
experiment indicates that the double-\bar{K} dibaryon, K^-K^-pp, which was
predicted to be a dense nuclear system, can also be formed in p+p collisions.
We find theoretically that the K^- -K^- repulsion plays no significant role in
reducing the density and binding energy of K^-K^-pp and that, when two
\Lambda(1405) resonances are produced simultaneously in a short-range p+p
collision, they act as doorways to copious formation of K^-K^-pp, if and only
if K^-K^-pp is a dense object, as predicted.Comment: 8 pages, 9 figures, Accepted Apr. 19, 201
SU(2) low-energy constants from mixed-action lattice QCD
An analysis of the pion mass and pion decay constant is performed using mixed-action lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n(f) = 2 + 1 configurations generated by the MILC Collaboration. Calculations were performed at two lattice spacings of b approximate to 0.125 fm and b approximate to 0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 \u3c = m(l)/m(s) \u3c = 0.6, while pion masses are in the range 235 less than or similar to m(pi) less than or similar to 680 MeV. A two-flavor chiral perturbation theory analysis of the lattice QCD calculations constrains the Gasser-Leutwyler coefficients (l) over bar (3) and (l) over bar (4) to be (l) over bar (3) = 4.04(40)((73)(55)) and (l) over bar (4) = 4.30(51)((84)(60)). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f(pi)/f = 1.062(26)((42)(40)) where f is the decay constant in the chiral limit, and when combined with the experimental determination of f(pi) results in a value of f = 122.8(3.0((4.6)(4.8)) MeV. The most recent scale setting by the MILC Collaboration yields a postdiction of f(pi) = 128.2(3.6)((4.4)(6.0))((1.2)(3.3)) MeV at the physical pion mass. A detailed error analysis indicates that precise calculations at lighter pion masses is the single most important systematic to address to improve upon the present work
Semi-supervised Convolutional Neural Networks for Flood Mapping using Multi-modal Remote Sensing Data
When floods hit populated areas, quick detection of flooded areas is crucial for initial response by local government, residents, and volunteers. Space-borne polarimetric synthetic aperture radar (PolSAR) is an authoritative data sources for flood mapping since it can be acquired immediately after a disaster even at night time or cloudy weather. Conventionally, a lot of domain-specific heuristic knowledge has been applied for PolSAR flood mapping, but their performance still suffers from confusing pixels caused by irregular reflections of radar waves. Optical images are another data source that can be used to detect flooded areas due to their high spectral correlation with the open water surface. However, they are often affected by day, night, or severe weather conditions (i.e., cloud). This paper presents a convolution neural network (CNN) based multimodal approach utilizing the advantages of both PolSAR and optical images for flood mapping. First, reference training data is retrieved from optical images by manual annotation. Since clouds may appear in the optical image, only areas with a clear view of flooded or non-flooded are annotated. Then, a semisupervised polarimetric-features-aided CNN is utilized for flood mapping using PolSAR data. The proposed model not only can handle the issue of learning with incomplete ground truth but also can leverage a large portion of unlabelled pixels for learning. Moreover, our model takes the advantages of expert knowledge on scattering interpretation to incorporate polarimetric-features as the input. Experiments results are given for the flood event that occurred in Sendai, Japan, on 12th March 2011. The experiments show that our framework can map flooded area with high accuracy (F1 = 96:12) and outperform conventional flood mapping methods
Effective Interactions for the Three-Body Problem
The three-body energy-dependent effective interaction given by the
Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator
spaces. The results are applied to the test case of the three-body problem
(triton and He3), where it is shown that the interaction reproduces the exact
binding energy, regardless of the parameterization (number of oscillator quanta
or value of the oscillator parameter b) of the low-energy included space. We
demonstrate a non-perturbative technique for summing the excluded-space
three-body ladder diagrams, but also show that accurate results can be obtained
perturbatively by iterating the two-body ladders. We examine the evolution of
the effective two-body and induced three-body terms as b and the size of the
included space Lambda are varied, including the case of a single included
shell, Lambda hw=0 hw. For typical ranges of b, the induced effective
three-body interaction, essential for giving the exact three-body binding, is
found to contribute ~10% to the binding energy.Comment: 19 pages, 9 figures, submitted to PR
High Statistics Analysis using Anisotropic Clover Lattices: (IV) Volume Dependence of Light Hadron Masses
The volume dependence of the octet baryon masses and relations among them are
explored with Lattice QCD. Calculations are performed with n_f=2+1 clover
fermion discretization in four lattice volumes, with spatial extent L ~ 2.0,
2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in
the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion
mass of m_pi ~ 390 MeV. The typical precision of the ground-state baryon mass
determination is ~0.2%, enabling a precise exploration of the volume dependence
of the masses, the Gell-Mann--Okubo mass relation, and of other mass
combinations. A comparison of the volume dependence with the predictions of
heavy baryon chiral perturbation theory is performed in both the SU(2)_L X
SU(2)_R and SU(3)_L X SU(3)_R expansions. Predictions of the three-flavor
expansion for the hadron masses are found to describe the observed volume
dependences reasonably well. Further, the Delta-N-pi axial coupling constant is
extracted from the volume dependence of the nucleon mass in the two-flavor
expansion, with only small modifications in the three-flavor expansion from the
inclusion of kaons and etas. At a given value of m_pi L, the finite-volume
contributions to the nucleon mass are predicted to be significantly smaller at
m_pi ~ 140 MeV than at m_pi ~ 390 MeV due to a coefficient that scales as ~
m_pi^3. This is relevant for the design of future ensembles of lattice
gauge-field configurations. Finally, the volume dependence of the pion and kaon
masses are analyzed with two-flavor and three-flavor chiral perturbation
theory.Comment: 34 pages, 45 figure
Present Constraints on the H-dibaryon at the Physical Point from Lattice QCD
The current constraints from lattice QCD on the existence of the H-dibaryon
are discussed. With only two significant lattice QCD calculations of the
H-dibaryon binding energy at approximately the same lattice spacing, the forms
of the chiral and continuum extrapolations to the physical point are not
determined. In this brief report, we consider the constraints on the H-dibaryon
imposed by two simple chiral extrapolations. In both instances, the
extrapolation to the physical pion mass allows for a bound H-dibaryon or a
near-threshold scattering state. Further lattice QCD calculations are required
to clarify this situation.Comment: 8 pages, 2 figures, 1 table; revised for the journa
Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths
We discuss the design, fabrication, and testing of prototype horn-coupled,
lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic
microwave background (CMB) studies. The LEKIDs are made from a thin aluminum
film deposited on a silicon wafer and patterned using standard
photolithographic techniques at STAR Cryoelectronics, a commercial device
foundry. We fabricated twenty-element arrays, optimized for a spectral band
centered on 150 GHz, to test the sensitivity and yield of the devices as well
as the multiplexing scheme. We characterized the detectors in two
configurations. First, the detectors were tested in a dark environment with the
horn apertures covered, and second, the horn apertures were pointed towards a
beam-filling cryogenic blackbody load. These tests show that the multiplexing
scheme is robust and scalable, the yield across multiple LEKID arrays is 91%,
and the noise-equivalent temperatures (NET) for a 4 K optical load are in the
range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}
Cost Management Practice of Construction Firms and Its Influencing Factors: Lessons from Southwestern Nigeria
The growing need at maintaining steady cost projection of construction projects has been an issue of serious concern to both the clients and the construction practitioners on sites. Also, cost deviation from initial cost plan and cost budget has been prevalent on construction sites and no concerted efforts have been made at addressing this phenomenon. This study therefore examined the factors that are considered to be affecting the cost management practice of construction firms in the southwestern Nigeria and also proffered possible ways of ameliorating the factors. Using survey approach, one hundred copies each of structured questionnaires were distributed to clients, contractors and consultants on construction sites in the study area while 72, 77 and 78 copies were duly filled and returned by the respondents respectively. Relative Importance Index (RII) technique was used for the analysis. The results revealed that poor leadership and in appropriate management, inefficient deployment of resources, excessive wastage of materials on sites, complex payment mechanisms, theft of materials on sites and variation during construction works are the prevailing factors affecting construction cost management practice in the study area. It was concluded that extra focus should be placed on the identified factors with a
view to reducing cost of construction, enhancing construction performance and building confidence within the construction industry in the study area
- …