16,330 research outputs found

    Irreversibility and the arrow of time in a quenched quantum system

    Get PDF
    Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.Comment: 8 pages, 7 figures, RevTeX4-1; Accepted for publication Phys. Rev. Let

    Electromagnetic transitions in an effective chiral Lagrangian with the eta-prime and light vector mesons

    Full text link
    We consider the chiral Lagrangian with a nonet of Goldstone bosons and a nonet of light vector mesons. The mixing between the pseudoscalar mesons eta and eta-prime is taken into account. A novel counting scheme is suggested that is based on hadrogenesis, which conjectures a mass gap in the meson spectrum of QCD in the limit of a large number of colors. Such a mass gap would justify to consider the vector mesons and the eta-prime meson as light degrees of freedom. The complete leading order Lagrangian is constructed and discussed. As a first application it is tested against electromagnetic transitions of light vector mesons to pseudoscalar mesons. Our parameters are determined by the experimental data on photon decays of the omega, phi and eta-prime meson. In terms of such parameters we predict the corresponding decays into virtual photons with either dielectrons or dimuons in the final state.Comment: 17 pages, extended discussion on mixin

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    The PEP Survey: Infrared Properties of Radio-Selected AGN

    Full text link
    By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable redshift estimate, and sub-divided them into star-forming galaxies and AGN solely on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z<~3.5. 832 radio sources have a counterpart in the PEP catalogue. 175 are AGN. Their redshift distribution closely resembles that of the total radio-selected AGN population, and exhibits two marked peaks at z~0.9 and z~2.5. We find that the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio power and redshift, whereby powerful sources are more likely to be FIR emitters at earlier epochs. This is due to two distinct effects: 1) at all radio luminosities, FIR activity monotonically increases with look-back time and 2) radio activity of AGN origin is increasingly less effective at inhibiting FIR emission. Radio-selected AGN with FIR emission are preferentially located in galaxies which are smaller than those hosting FIR-inactive sources. Furthermore, at all z<~2, there seems to be a preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the chances for FIR emission. We find such FIR (and MIR) emission to be due to processes indistinguishable from those which power star-forming galaxies. It follows that radio emission in at least 35% of the entire AGN population is the sum of two contributions: AGN accretion and star-forming processes within the host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA

    ISO-SWS spectroscopy of NGC 1068

    Get PDF
    We present ISO-SWS spectroscopy of NGC 1068 for the wavelength range 2.4 to 45um, detecting a total of 36 emission lines. Most of the observed transitions are fine structure and recombination lines originating in the narrow line region. We compare the line profiles of optical lines and reddening-insensitive infrared lines to constrain the dynamical structure and extinction properties of the NLR. The considerable differences found are most likely explained by two effects. (1) The spatial structure of the NLR is a combination of a highly ionized outflow cone and lower excitation extended emission. (2) Parts of the NLR, mainly in the receding part at velocities above systemic, are subject to extinction that is significantly suppressing optical emission. Line asymmetries and net blueshifts remain, however, even for infrared fine structure lines suffering very little obscuration. This may be either due to an intrinsic asymmetry of the NLR, or due to a very high column density obscuring component which is hiding part of the NLR even from infrared view. Mid-infrared emission of molecular hydrogen in NGC 1068 arises in a dense molecular medium at temperatures of a few hundred Kelvin that is most likely closely related to the warm and dense components seen in the near-infrared H2 transitions, and in millimeter wave tracers of molecular gas. Any emission of the putative pc-scale molecular torus is likely overwhelmed by this larger scale emission.Comment: aastex (V4), 9 eps figures. Accepted by Ap

    Effective thermodynamics of strongly coupled qubits

    Full text link
    Interactions between a quantum system and its environment at low temperatures can lead to violations of thermal laws for the system. The source of these violations is the entanglement between system and environment, which prevents the system from entering into a thermal state. On the other hand, for two-state systems, we show that one can define an effective temperature, placing the system into a `pseudo-thermal' state where effective thermal laws are upheld. We then numerically explore these assertions for an n-state system inspired by the spin-boson environment.Comment: 9 pages, 3 figure
    • …
    corecore