12 research outputs found

    Infection and Vertical Transmission of Kamiti River Virus in Laboratory Bred Aedes aegypti Mosquitoes

    Get PDF
    Kamiti river virus (KRV) is an insect-only Flavivirus that was isolated from field-collected Ae. macintoshi mosquitoes in 1999, and is closely related to cell fusing agent virus. Both of these viruses belong to the family Flaviviridae, which also contains other viruses of medical importance, such as yellow fever virus, West Nile virus and dengue. Because Ae. macintoshi is the only known natural host to KRV, the main objective of this study was to establish the possibility that other mosquito hosts of the virus exist, by determining its ability to infect Ae. aegypti mosquitoes under laboratory conditions. The study also sought to determine the rates of infection and, subsequently, vertical transmission as a possible means of its maintenance and propagation in nature, given that it neither grows in vertebrate cells or mice. The mosquitoes were infected by the virus either as larvae or adults. Virus assay was done by re-isolation in tissue culture and indirect immunofluoresce assay methods. KRV infected Ae. aegypti mosquitoes, with the observed rates as high as 74 to 96 %. The virus was also transmitted vertically in these mosquitoes. Vertical transmission rates of 3.90 % were observed for the 2nd and 3rd ovarian cycles combined. These results suggest that Ae. aegypti mosquitoes are likely to be infected with KRV in nature, and that vertical transmission is the natural means by which it is maintained and propagated in this host, and possibly others

    Wordwide patterns of genetic differentiation imply multiple ‘domestications’of Aedes aegypti, a major vector of human diseases

    Get PDF
    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti

    Wordwide patterns of genetic differentiation imply multiple ‘domestications’of Aedes aegypti, a major vector of human diseases

    No full text
    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti
    corecore