157 research outputs found

    Hydrogel microwell arrays allow the assessment of protease-associated enhancement of cancer cell aggregation and survival

    Get PDF
    Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance

    Microfluidic Synthesis of Cell-Type-Specific Artificial Extracellular Matrix Hydrogels

    Get PDF
    Droplet microfluidic technology is applied for the high-throughput synthesis via Michael-type addition of reactive, micrometer-sized poly(ethylene glycol) (PEG) hydrogels (“microgels”) with precisely controlled dimension and physicochemical properties. A versatile chemical scheme is used to modify the reactive PEG microgels with tethered biomolecules to tune their bioactive properties for the bioreactor culture and manipulation of various (stem) cell types

    Progress and potential in organoid research

    Get PDF
    Tissue and organ biology are very challenging to study in mammals, and progress can be hindered, particularly in humans, by sample accessibility and ethical concerns. However, advances in stem cell culture have made it possible to derive in vitro 3D tissues called organoids, which capture some of the key multicellular, anatomical and even functional hallmarks of real organs at the micrometre to millimetre scale. Recent studies have demonstrated that organoids can be used to model organ development and disease and have a wide range of applications in basic research, drug discovery and regenerative medicine. Researchers are now beginning to take inspiration from other fields, such as bioengineering, to generate organoids that are more physiologically relevant and more amenable to real-life applications

    3D chemical characterization of frozen hydrated hydrogels using ToF-SIMS with argon cluster sputter depth profiling

    Get PDF
    Hydrogels have been used extensively in bioengineering as artificial cell culture supports. Investigation of the interrelationship between cellular response to the hydrogel and its chemistry ideally requires methods that allow characterization without labels and can map species in three dimensional to follow biomolecules adsorbed to, and absorbed into, the open structure before and during culture. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has the potential to be utilized for through thickness characterization of hydrogels. The authors have established a simple sample preparation procedure to successfully achieve analysis of frozen hydrated hydrogels using ToF-SIMS without the need for dry glove box entry equipment. They demonstrate this on a poly(2-hydroxyethyl methacrylate) (pHEMA) film where a model protein (lysozyme) is incorporated using two methods to demonstrate how protein distribution can be determined. A comparison of lysozyme incorporation is made between the situation where the protein is present in a polymer dip coating solution and where lysozyme is in an aqueous medium in which the film is incubated. It is shown that protonated water clusters H(H2O)nþ where n ¼ 5–11 that are indicative of ice are detected through the entire thickness of the pHEMA. The lysozyme distribution through the pHEMA hydrogel films can be determined using the intensity of a characteristic amino acid secondary ion fragment

    Bioengineered embryoids mimic post-implantation development in vitro.

    Get PDF
    The difficulty of studying post-implantation development in mammals has sparked a flurry of activity to develop in vitro models, termed embryoids, based on self-organizing pluripotent stem cells. Previous approaches to derive embryoids either lack the physiological morphology and signaling interactions, or are unconducive to model post-gastrulation development. Here, we report a bioengineering-inspired approach aimed at addressing this gap. We employ a high-throughput cell aggregation approach to simultaneously coax mouse embryonic stem cells into hundreds of uniform epiblast-like aggregates in a solid matrix-free manner. When co-cultured with mouse trophoblast stem cell aggregates, the resulting hybrid structures initiate gastrulation-like events and undergo axial morphogenesis to yield structures, termed EpiTS embryoids, with a pronounced anterior development, including brain-like regions. We identify the presence of an epithelium in EPI aggregates as the major determinant for the axial morphogenesis and anterior development seen in EpiTS embryoids. Our results demonstrate the potential of EpiTS embryoids to study peri-gastrulation development in vitro

    Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix

    Get PDF
    By binding growth factors (GFs), the ECM tightly regulates their activity. We recently reported that the heparin-binding domain II of fibronectin acts as a promiscuous high-affinity GF-binding domain. Here we hypothesized that fibrin, the provisional ECM during tissue repair, also could be highly promiscuous in its GF-binding capacity. Using multiple affinity-based assays, we found that fibrin(ogen) and its heparin-binding domain bind several GFs from the PDGF/VEGF and FGF families and some GFs from the TGF-β and neurotrophin families. Overall, we identified 15 unique binding interactions. The GF binding ability of fibrinogen caused prolonged retention of many of the identified GFs within fibrin. Thus, based on the promiscuous and high-affinity interactions in fibrin, GF binding may be one of fibrin's main physiological functions, and these interactions may potentially play an important and ubiquitous role during tissue repair. To prove this role in a gain-of-function model, we incorporated the heparin-binding domain of fibrin into a synthetic fibrin-mimetic matrix. In vivo, the multifunctional synthetic matrix could fully mimic the effect of fibrin in a diabetic mouse model of impaired wound healing, demonstrating the benefits of generating a hybrid biomaterial consisting of a synthetic polymeric scaffold and recombinant bioactive ECM domains. The reproduction of GF-ECM interactions with a fibrin-mimetic matrix could be clinically useful, and has the significant benefit of a more straightforward regulatory path associated with chemical synthesis rather than human sourcing

    Enhancing the Reliability and Throughput of Neurosphere Culture on Hydrogel Microwell Arrays

    Get PDF
    The neurosphere assay is the standard retrospective assay to test the self-renewal capability and multipotency of neural stem cells (NSC) in vitro. However, it has recently become clear that not all neurospheres are derived from a NSC and that on conventional cell culture substrates, neurosphere motility may cause frequent neurosphere 'merging' (Singec et al., Nature Methods, 2006; Jessberger et al., Stem Cells, 2007). Combining biomimetic hydrogel matrix technology with microengineering, we developed a microwell array platform on which NSC fate and neurosphere formation can be unequivocally attributed to a single founding cell. Using time-lapse microscopy and retrospective immunostaining, the fate of several hundred single NSCs was quantified. Compared to conventional neurosphere culture methods on plastic dishes, we detected a more than 100% increase in single NSC viability on soft hydrogels. Effective confinement of single proliferating cells to microwells led to neurosphere formation of vastly different sizes, a high percentage of which showed stem cell phenotypes after one week in culture. The reliability and increased throughput of this platform should help to elucidate better the function of sphere-forming stem/progenitor cells independent of their proliferation dynamics
    • …
    corecore