26 research outputs found

    Attosecond pulse shaping using a seeded free-electron laser

    Get PDF
    Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1–3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4–7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14–16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers

    Complex attosecond waveform synthesis at fel fermi

    Get PDF
    Free-electron lasers (FELs) can produce radiation in the short wavelength range extending from the extreme ultraviolet (XUV) to the X-rays with a few to a few tens of femtoseconds pulse duration. These facilities have enabled significant breakthroughs in the field of atomic, molecular, and optical physics, implementing different schemes based on two-color photoionization mechanisms. In this article, we present the generation of attosecond pulse trains (APTs) at the seeded FEL FERMI using the beating of multiple phase-locked harmonics. We demonstrate the complex attosecond waveform shaping of the generated APTs, exploiting the ability to manipulate independently the amplitudes and the phases of the harmonics. The described generalized attosecond waveform synthesis technique with an arbitrary number of phase-locked harmonics will allow the generation of sub-100 as pulses with programmable electric fields

    Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam

    No full text
    Coherent emission from a microbunched electron beam is the driving force behind the revolution in light sources, enabling x-ray free-electron lasers (FELs) to emit pulses 9 orders of magnitude brighter than previous sources. Microbunches form perpendicular to the electron travel direction, and the conventional understanding is that they shear rather than rotate in response to a transverse kick, locking FEL facilities into a single-user operating mode. In this paper, we show that microbunches rotate toward the new direction of travel if the electron beam is kicked and defocused. We provide evidence that microbunch rotation explains the unexpectedly large amount of off-axis radiation observed during experiments at the Linac Coherent Light Source. We demonstrate that LCLS can be multiplexed into at least three separate beams using this principle. Finally, we propose using a magnetic triplet to rotate microbunches through significantly larger angles without microbunch degradation. This new understanding of microbunch dynamics can lead to significantly improved multiplexing at FEL facilities, microbunch preservation through a bend, and x-ray pulses with a pulse-front tilt

    Population inversion X-ray laser oscillator

    No full text
    Oscillators are at the heart of optical lasers, providing stable, transform-limited pulses. Until now, laser oscillators have been available only in the infrared to visible and near-ultraviolet (UV) spectral region. In this paper, we present a study of an oscillator operating in the 5- to 12-keV photon-energy range. We show that, using the Kα1K{\alpha }_{1} line of transition metal compounds as the gain medium, an X-ray free-electron laser as a periodic pump, and a Bragg crystal optical cavity, it is possible to build X-ray oscillators producing intense, fully coherent, transform-limited pulses. As an example, we consider the case of a copper nitrate gain medium generating ∼ 5 × 1010{\mathrm{10}}^{10} photons per pulse with 37-fs pulse length and 48-meV spectral resolution at 8-keV photon energy. Our theoretical study and simulation of this system show that, because of the very large gain per pass, the oscillator saturates and reaches full coherence in four to six optical-cavity transits. We discuss the feasibility and design of the X-ray optical cavity and other parts of the oscillator needed for its realization, opening the way to extend X-ray–based research beyond current capabilities

    Of Love Off

    Get PDF
    Transverse deflecting structures (TDS) are widely used in accelerator physics to measure the longitudinal density of particle bunches. When used in combination with a dispersive section, the whole longitudinal phase space density can be imaged. At the Linac Coherent Light Source (LCLS), the installation of such a device downstream of the undulators enables the reconstruction of the X-ray temporal intensity profile by comparing longitudinal phase space distributions with lasing on and lasing off. However, the resolution of this TDS is limited to around 1 fs rms (root mean square), and therefore, it is not possible to resolve single self-amplified spontaneous emission (SASE) spikes within one X-ray photon pulse. By combining the power spectrum from a high resolution photon spectrometer and the temporal structure from the TDS, the overall resolution is enhanced, thus allowing the observation of temporal, single SASE spikes. The combined data from the spectrometer and the TDS is analyzed using an iterative algorithm to obtain the actual intensity profile. In this paper, we present some improvements to the reconstruction algorithm as well as real data taken at LCLS

    Fresh-Slice Multicolour X-Ray Free-Electron Lasers

    No full text
    X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice scheme outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. We also demonstrate the first three-colour XFEL and variably polarized two-colour pulses
    corecore