142 research outputs found

    Differential effects on inhibition of cholesterol absorption by plant stanol and plant sterol esters in apoE−/− mice

    Get PDF
    Aims 'Functional foods'; supplemented with plant sterol esters (PSE) and plant stanol esters (PSA) are therapeutic options for the management of hypercholesterolaemia. However, their effects on blood monocytes, endothelial function, atherogenesis, and sterol tissue concentrations are poorly understood. Methods and results Male apoE−/− mice (n= 30) were randomized to three different diets for 6 weeks (n= 10 per group): high-cholesterol (1.25%) western-type diet (WTD), WTD + 2% PSE, and WTD + 2% PSA. Both supplements reduced serum cholesterol. WTD + PSE resulted in increased plant sterol serum concentrations and increased inflammatory Ly-6C(high) monocyte numbers. WTD + PSA increased plant stanol serum concentrations and Ly-6C-monocyte numbers, but decreased vascular superoxide release, lipid hydroperoxides, and inflammatory cytokines in aortic tissue, in plasma, and in circulating monocytes. Despite reduced serum cholesterol concentrations, both supplements impaired endothelial vasodilation compared with WTD. WTD + PSA reduced the development of atherosclerotic lesions compared with WTD alone (12.7 ± 3.7 vs. 28.3 ± 3.5%), and WTD + PSE was less effective (17.5 ± 3.7%). WTD + PSE and WTD + PSA reduced the cholesterol content in the liver, but not in the brain. However, WTD + PSE and WTD + PSA increased plant sterol and plant stanol concentrations in the liver as well as in the brain. Conclusion PSE and PSA supplementation reduced serum cholesterol, but increased plant sterol and plant stanol concentrations. Elevated levels of PSE and PSA were associated with endothelial dysfunction and increased central nervous system depositions. Atherosclerotic lesion retardation was more pronounced in WTD + PSA, coinciding with higher regenerative monocyte numbers, decreased oxidative stress, and decreased inflammatory cytokines compared with WTD + PSE

    Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5−/− Mice

    Get PDF
    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations in brain cholesterol homeostasis and subsequently with brain functions. ATP binding cassette (Abc)g5−/− mice, a phytosterolemia model, were compared to Abcg5+/+ mice for serum and brain plant sterol accumulation and behavioral and cognitive performance. Serum and brain plant sterol concentrations were respectively 35–70-fold and 5–12-fold increased in Abcg5−/− mice (P < 0.001). Plant sterol accumulation resulted in decreased levels of desmosterol (P < 0.01) and 24(S)-hydroxycholesterol (P < 0.01) in the hippocampus, the brain region important for learning and memory functions, and increased lanosterol levels (P < 0.01) in the cortex. However, Abcg5−/− and Abcg5+/+ displayed no differences in memory functions or in anxiety and mood related behavior. The swimming speed of the Abcg5−/− mice was slightly higher compared to Abcg5+/+ mice (P < 0.001). In conclusion, plant sterols in the brains of Abcg5−/− mice did have consequences for brain cholesterol metabolism, but did not lead to an overt phenotype of memory or anxiety related behavior. Thus, our data provide no contra-indication for nutritional intake of plant sterol enriched nutrition

    The Structure of the NPC1L1 N-Terminal Domain in a Closed Conformation

    Get PDF
    NPC1L1 is the molecular target of the cholesterol lowering drug Ezetimibe and mediates the intestinal absorption of cholesterol. Inhibition or deletion of NPC1L1 reduces intestinal cholesterol absorption, resulting in reduction of plasma cholesterol levels.Here we present the 2.8 Å crystal structure of the N-terminal domain (NTD) of NPC1L1 in the absence of cholesterol. The structure, combined with biochemical data, reveals the mechanism of cholesterol selectivity of NPC1L1. Comparison to the cholesterol free and bound structures of NPC1(NTD) reveals that NPC1L1(NTD) is in a closed conformation and the sterol binding pocket is occluded from solvent.The structure of NPC1L1(NTD) reveals a degree of flexibility surrounding the entrance to the sterol binding pocket, suggesting a gating mechanism that relies on multiple movements around the entrance to the sterol binding pocket

    RETRACTED ARTICLE: Age-dependent Increase in Desmosterol Restores DRM Formation and Membrane-related Functions in Cholesterol-free DHCR24−/− Mice

    Get PDF
    Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF

    Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Full text link
    corecore