25 research outputs found

    Exploring mechanisms that shape Siphonaptera composition and distribution patterns on small mammals across South Africa

    Get PDF
    Thesis (PhD)--Stellenbosch University, 2015.ENGLISH ABSTRACT: Fleas (Siphonaptera) are obligate ectoparasites of mammals and birds. Due to their economic importance as disease vectors, most contemporary studies on macroparasites now also consider the spatial variation of parasite communities and the underlying mechanisms involved in shaping current distribution patterns. Fleas differ in life history traits, such as the level of host specificity and microhabitat preferences, which can result in differential evolutionary responses to similar abiotic events. The main objectives of this study are to investigate: (1) the influence of vicariance and host association on the genetic structure of two generalist flea species, Listropsylla agrippinae, and Chiastopsylla rossi. The taxa differ in the time spent on the host (fur vs. nest) and the level of host specificity; (2) the taxonomy of Dinopsyllus ellobius to determine whether more than one species exist and if so to then elucidate the mechanisms of speciation; and (3) the influence of flea life history on species distribution model performance and see if the relative importance of predictor variables differ between species with different life histories. A total of 1423 small mammals were brushed to collect 2906 flea individuals originating from 31 geographically distinct localities throughout South Africa (SA). Phylogeographic structure of L. agrippinae and C. rossi were determined by making use of 315 mitochondrial COII (mtDNA) and 174 nuclear EF1-α (nDNA) sequences. The more host specific fur flea, L. agrippinae, displayed pronounced spatial phylogeographic structure, based on mtDNA, which was congruent with host vicariance in the region. In contrast, the more generalist nest flea, C. rossi, showed a higher level of inter-populational divergence, based on mtDNA and nDNA, and this may be attributed to comparatively higher restrictions to dispersal when compared to the more specific fur flea. In an attempt to resolve the taxonomy of D. ellobius, 151 mtDNA and 68 nDNA alleles were generated from individuals meeting the morphological description of D. ellobius. Two distinct D. ellobius lineages that corresponded to previously described species (D. ellobius and D. abaris) were recorded. The results indicate that the two species indeed differ morphologically and based on the distribution of the two species it was concluded that the diversification could be a result of climate driven vicariance and subsequent ecological segregation according to habitat use. Locality records from Segerman (1995) were digitized and used as background data in species distribution modelling. Sufficient information was obtained for 21 flea species. A total of 68 climatic and landscape feature predictor variables were obtained and through a process of elimination, 19 variables were ultimately used. Model performance was good to excellent on average and the contribution of climate and landscape feature variables differed between fleas with different life histories. Historical and contemporary climate has the most prominent effect on flea distribution at the regional scale, but the level of host association influences the phylogeographic pattern of fleas. This study provides the first evidence of congruent phylogeographic patterns between a generalist temporary parasite and its hosts. Our findings provide further support for the notion that more than one species exist within the D. ellobius complex and that speciation is a result of complex interactions. The study also provides novel data on the role of environmental variables in shaping the geographic distribution of flea species with different life histories. With the anticipated rise in flea-borne diseases worldwide, due to changes in vector distribution, the study further emphasize the need for studying the mechanisms involved in shaping flea distribution patterns.AFRIKAANSE OPSOMMING: Vlooie (Siphonaptera) is verpligte ektoparasiete van soogdiere en voëls. As gevolg van hul ekonomiese belangrikheid as vektore van oordraagbare siektes, neem meeste kontemporêre studies oor makroparasiete nou die ruimtelike variasie (vikariansie) van parasiet gemeenskappe en die onderliggende meganismes betrokke by die vorming van die huidige verspreiding patrone in ag. Vlooie verskil in lewensgeskiedenis eienskappe, soos die graad van gasheer spesifisiteit en mikrohabitat voorkeur, wat kan lei tot differensiële evolusionêre patrone tot soortgelyke abiotiese gebeure. Die belangrikste doelwitte van hierdie studie is om ondersoek in te stel na: (1) die invloed van vikariansie en gasheer assosiasie op die genetiese struktuur van twee algemene vlooi spesies, Listropsylla agrippinae en Chiastopsylla rossi. Die taxa verskil in die hoeveelheid tyd wat gespandeer word op die gasheer (pels vs. nes) en die graad van gasheer spesifisiteit; (2) die taksonomie van Dinopsyllus ellobius om te bepaal of daar meer as een spesie bestaan, en indien wel, die meganismes van spesiasie voortbring; en (3) die invloed van vlooi lewensgeskiedenis op die prestasie van die spesies verspreidings model en kyk of die relatiewe belangrikheid van omgewingsvoorspellers verskil tussen spesies met verskillende lewensgeskiedenisse. 'n Totaal van 1423 klein soogdiere is geborsel om 2906 vlooi individue afkomstig van 31 geografies verskillende plekke in Suid-Afrika in te samel. Filogeografiese struktuur van L. agrippinae en C. rossi is bepaal deur gebruik te maak van 315 mitochondriale COII (mtDNA) en 174 kern EF1-α (nDNA) volgorde bepalings. Die meer gasheer spesifieke pels vlooi, L. agrippinae, het ruimtelike filogeografiese struktuur aangetoon, gebaseer op mtDNA, wat ooreenstem met gasheer vikariansie in die streek. In teenstelling hiermee het die minder gasheer spesifieke nes vlooi, C. rossi, 'n hoër vlak van inter-populasie divergensie getoon, gebaseer op mtDNA en nDNA, wat toegeskryf kan word aan relatief hoër beperkings op verspreiding teenoor die meer gasheer spesifieke pels vlooi. In 'n poging om die taksonomie van D. ellobius op te los is 151 mtDNA en 68 nDNA allele gegenereer uit individue wat voldoen aan die morfologiese beskrywing van D. ellobius. Twee afsonderlike D. ellobius afstammelinge wat ooreengestem het met voorheen beskryfde spesies (D. ellobius en D. abaris) is aangeteken. Die resultate dui daarop dat die twee spesies inderdaad morfologies verskil en gebaseer op die verspreiding van die twee spesies is daar tot die gevolgtrekking gekom dat die diversifikasie moontlik toegeskryf kan word aan klimaat gedryfde vikariansie en daaropvolgende ekologiese segregasie volgens habitat gebruik. Geografiese verspreidings rekords van Segerman (1995) was gedigitaliseerd en gebruik as agtergrond data in die spesie verspreidings modelle. 'n Totaal van 68 klimaat en landskap kenmerk voorspeller veranderlikes is verkry, en deur 'n proses van eliminasie, is 19 veranderlikes gebruik. Model prestasie was oor die algemeen goed tot uitstekend en die bydrae van klimaat en landskaps veranderlikes het verskil tussen vlooie met verskille in lewensgeskiedenis. Historiese en kontemporêre klimaat het die mees prominente effek op vlooi verspreiding by die plaaslike skaal, maar die vlak van die gasheer assosiasie beïnvloed die filogeografiese patroon van vlooie. Hierdie studie bied die eerste getuienis van ooreenstemmende filogeografiese patrone tussen 'n minder gasheer spesifieke, tydelike parasiet en sy gashere. Ons bevindinge bied verdere ondersteuning vir die idee dat meer as een spesie bestaan binne die D. ellobius kompleks en dat spesiasie 'n gevolg is van komplekse interaksies. Die studie bied ook nuwe data oor die bydrae van die omgewingsveranderlikes in die vorming van die geografiese verspreiding van vlooi spesies met verskillende lewensgeskiedenisse. Met die verwagte styging in vlooi-oordraagbare siektes wêreldwyd, as gevolg van veranderinge in vektor verspreiding, beklemtoon die studie verder die noodsaaklikheid vir die bestudering van die meganismes betrokke in die vorming van vlooi verspreiding patrone.National Research Foundation (NRF

    Documenting the microbiome diversity and distribution in selected fleas from South Africa with an emphasis on the cat flea, Ctenocephalides f. felis.

    Get PDF
    The factors that influence parasite associated bacterial microbial diversity and the geographic distributions of bacteria are not fully understood. In an effort to gain a deeper understanding of the relationship between the bacterial diversity of Ctenocephalides fleas and host species and the external environment, we conducted a metagenetic analysis of 107 flea samples collected from 8 distinct sampling sites in South Africa. Pooled DNA samples mostly comprising of 2 or 3 individuals sampled from the same host, and belonging to the same genetic cluster, were sequenced using the Ion PGMâ„¢ Hi-Qâ„¢ Kit and the Ion 316â„¢ Chip v2. Differences were detected in the microbiome compositions between Ctenocephalides felis, Ctenocephalides canis and Ctenocephalides connatus. Although based on a small sample, C. connatus occurring on wildlife harboured a higher bacterial richness when compared to C. felis on domestic animals. Intraspecific differences in the microbial OTU diversity were detected within C. f. felis that occurred on domestic cats and dogs. Different genetic lineages of C. f. felis were similar in microbial compositions but some differences exist in the presence or absence of rare bacteria. Rickettsia and Bartonella OTU's identified in South African cat fleas differ from those identified in the USA and Australia. Intraspecific microbial compositions also differ across geographic sampling sites. Generalized dissimilarity modelling showed that temperature and humidity are potentially important environmental factors explaining the pattern obtained

    Multi-site interaction turnover in flea–mammal networks from four continents: Application of zeta diversity concept and multi-site generalised dissimilarity modelling

    Get PDF
    We studied patterns of changes in host–flea interactions measured as total turnover (TT) which can be partitioned into components, namely species turnover (ST), interaction rewiring (RW), and mixed turnover (MX) in networks from Europe, Asia, Africa, and South America, applying a multi-site interaction turnover metric. We also searched for environmental drivers of TT and its components. We asked whether (a) different components contribute differently to TT in rare versus common interactions (in terms of frequency of interaction occurrence); (b) relative roles of turnover components for rare and common interactions differ between continents; and (c) the environmental drivers of interaction turnover differ between turnover components, rare and common interactions, and/or continental networks. Between-network dissimilarity of interactions increased with an increase in the number of compared networks. Pure ST contributed the most to the turnover of rare interactions, whereas the turnover of common interactions was predominated by MX. The effects of environmental factors, interaction richness, and spatial distance on TT and its components differed between continental networks, turnover components, and rare versus common interactions. Climate and vegetation exerted the strongest effects on (a) ST for rare (except Asia) and, to a lesser degree, common (South America) interactions, (b) RW for both rare and common interactions in Europe/Asia, and (c) MX for both rare and common interactions (except Africa). Interaction richness and spatial distance mainly influenced ST. We conclude that the patterns of interaction turnover and its components were geographically invariant and did not depend on the identity of the interactors, whereas the drivers of the turnover differed between continental networks because of species-specific responses to the environment.Fil: Krasnov, Boris R.. Ben Gurion University of the Negev; IsraelFil: Khokhlova, Irina S.. Ben Gurion University of the Negev; IsraelFil: Kiefer, Mathias S.. Ludwig Maximilians Universitat; AlemaniaFil: Kiefer, Daniel. Ludwig Maximilians Universitat; AlemaniaFil: Lareschi, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Matthee, Sonja. Stellenbosch University; SudáfricaFil: Sánchez, Juliana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Shenbrot, Georgy I.. Ben Gurion University of the Negev; IsraelFil: Stanko, Michal. Slovak Academy of Sciences. Institute of Botany; EslovaquiaFil: van der Mescht, Luther. Stellenbosch University; Sudáfric

    Latitudinal distributions of the species richness, phylogenetic diversity, and functional diversity of fleas and their small mammalian hosts in four geographic quadrants

    Get PDF
    We studied latitudinal patterns in the species richness (SR), the phylogenetic diversity (PD), and the functional diversity (FD) of fleas and their mammalian hosts. We asked whether these patterns in either fleas, hosts, or both 1) conform to a classical latitudinal gradient; 2) vary geographically; and 3) differ between fleas and hosts. We also asked whether the patterns of PD and FD follow those of SR. We collected data on the latitudinal distribution of 1022 flea and 900 mammal species from literature sources and calculated the SR, PD, and FD of both groups in 1° latitude bands. Then, we used broken-stick regression models to analyse separately the latitudinal variation of 1) each diversity facet and 2) fleas and hosts in each geographic quadrant. The classical latitudinal gradient pattern was not found in either fleas or hosts across any facet of diversity or geographic quadrant, except for the PD of fleas in the southeastern quadrant and the FD of hosts in the southwestern quadrant. Latitudinal patterns of the SR, PD and FD of fleas and hosts differed substantially between geographic quadrants. Furthermore, the latitudinal distributions of flea and host SR were similar in three of four quadrants (except the northeastern quadrant), whereas the latitudinal distributions of flea and host PD were similar in the southwestern quadrant only. No similarity in flea versus host FD was revealed. The latitudinal patterns of flea and host PD and FD mostly did not follow those of their SR. We conclude that latitudinal gradients of species richness and phylogenetic and functional diversity appeared not to be universal phenomena. Instead, the latitudinal distributions of these diversity facets represent an interplay of ecological (current and past) and historical processes. For parasites, the processes acting on hosts add another layer of complexity underlying their latitudinal diversity patterns.Fil: Krasnov, Boris R.. Ben Gurion University of the Negev; IsraelFil: Grabovsky, Vasily I.. Ben Gurion University of the Negev; IsraelFil: Khokhlova, Irina S.. Ben Gurion University of the Negev; IsraelFil: Lopez Berrizbeitia, Maria Fernanda. Fundación Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Investigación de Biodiversidad Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Matthee, Sonja. No especifíca;Fil: Roll, Uri. Ben Gurion University of the Negev; IsraelFil: Sánchez, Juliana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Shenbrot, Georgy I.. Ben Gurion University of the Negev; IsraelFil: van der Mescht, Luther. No especifíca

    Ectoparasite assemblage of the four-striped mouse, Rhabdomys pumilio : the effect of anthropogenic habitat transformation and temporal variation

    Get PDF
    Thesis (MScConsEcol)--University of Stellenbosch, 2011.ENGLISH ABSTRACT: Anthropogenic habitat transformation and subsequent fragmentation of natural vegetation is regarded as one of the largest threats to biodiversity in the world. The Cape Floristic Region (CFR) in the Western Cape Province of South Africa is classified as a biodiversity hotspot due to its high plant species diversity and endemism. Increasing growth in agricultural activities in this region has contributed to fragmentation of pristine natural vegetation. A diverse assemblage of small mammal species are found in this region, but very little is known with regard to their ectoparasite diversity. More importantly, no information is available on the effect of fragmentation on parasite burdens or species assemblages. The aims of the study were first to record relative density, average body size and body condition of an endemic rodent, Rhabdomys pumilio, trapped in two habitat types (pristine natural areas and remnant fragments). Secondly, compare diversity and species composition of ectoparasite species on this rodent in the two habitat types. In addition, body size measurements of the two most abundant flea species were recorded and compared for the two habitat types. Lastly, temporal variation in mean abundance of fleas, mites, ticks and the louse were recorded within a habitat fragment surrounded by vineyards. Three hundred and ten individuals of the Four-striped mouse, R. pumilio, were trapped and euthanized at 8 localities (4 remnant habitat fragments and 4 pristine natural areas) in the CFR. All ectoparasites were removed and identified. A total of 8361 ectoparasites that consisted of 6 flea, 1 louse, 8 mites and 11 tick species were recorded. Mites and fleas were found to be more abundant on mice during cool wet months, whereas ticks and the louse were more abundant during the hot dry months of the year. Rodent host body size was larger and they were in better body condition in remnant fragments compared to pristine natural localities. A positive body size relationship was found between the flea, Listropsylla agrippinae, and the host, with larger fleas recorded on rodents that occur in fragments. Mean abundance and prevalence of overall ectoparasites combined and separately for ticks, mites, louse and fleas were higher in fragments compared to natural localities. The study shows that R. pumilio is host to a large diversity of ectoparasite species in the CFR. Moreover, habitat fragments within agricultural landscapes can facilitate higher parasite burdens and prevalence in rodent populations. This can lead to an increase in disease risk given that several of the parasite species are important vectors of pathogens that can cause disease in domestic, wild animals and humans.AFRIKAANSE OPSOMMING: Menslike habitat transformasie en die daaropvolgende fragmentasie van natuurlike plantegroei word beskou as een van die grootste bedreigings vir biodiversiteit in die wêreld. Die Kaap Floristiese Streek (KFS) in die Wes-Kaap Provinsie van Suid-Afrika word geklassifiseer as 'n biodiversiteit ‘hotspot’ as gevolg van sy hoë plant spesies diversiteit en endemisme. Toenemende groei in landbou-aktiwiteite in hierdie streek het ook bygedra tot die fragmentasie van ongerepte natuurlike plantegroei. 'n Diverse versameling van die klein soogdier spesies word in hierdie streek aangetref, maar baie min is bekend met betrekking tot hul ektoparasiet diversiteit. Meer belangrik, geen inligting is beskikbaar oor die effek van fragmentasie op parasietladings of spesie samestelling nie. Die doel van die studie was eerstens om relatiewe digtheid, gemiddelde liggaams grootte en kondisie van Rhabdomys pumilio aan te teken vir twee habitat tipes (ongerepte natuurlike area en oorblyfsel fragment). Tweedens was die diversiteit en spesiesamestelling van ektoparasiete op R. pumilio vergelyk vir die twee habitat tipes. Daarna was die liggaams grootte metings van die twee mees volopste vlooi spesies aangeteken en vergelyk vir die twee habitat tipes. Laastens was die seisonale variasie van die gemiddelde hoeveelheid vlooie, myte, bosluise en die luis aangeteken binne 'n habitat fragment omring deur wingerde. Drie honderd en tien individue van die vier-gestreepte muis, R. pumilio, was gevang op 8 plekke (4 oorblyfsel habitat fragmente en 4 ongerepte natuurlike areas) in die KFS en daarna was die diere uitgesit. Alle ektoparasiete was verwyder en geïdentifiseer. 'n Totaal van 8361 ektoparasiete wat bestaan het uit 6 vlooie, 1 luis, 8 myte en 11 bosluis spesies was aangeteken. Myte en vlooie gevind was meer volop op muise tydens die koel nat maande, terwyl bosluise en die luis meer volop was gedurende die warm droë maande van die jaar. Knaagdier gasheer liggaam was groter en in 'n beter kondisie in die habitat fragmente in vergelyking met ongerepte natuurlike areas. 'n Positiewe liggaam grootte verwantskap was tussen die vlooi, Listropsylla agrippinae, en die gasheer gevind, met groter vlooie aangeteken op knaagdiere wat voorkom in fragmente. Gemiddelde hoeveelheid en voorkoms van die totale ektoparasiete gekombineer en afsonderlik vir bosluise, myte, die luis en vlooie was hoër in fragmente in vergelyking met natuurlike areas. Die studie toon dat R. pumilio gasheer is vir 'n groot verskeidenheid van ektoparasiet spesies in die KFS. Daarbenewens kan habitat fragmente binne landbou landskappe hoër parasietladings en voorkoms in knaagdier bevolkings fasiliteer. Dit kan lei tot 'n toename in siekte risiko, gegee dat verskeie van die parasietspesies belangrike vektore is van patogene wat siektes kan veroorsaak in huishoudelike, wilde diere en die mens

    Comparative phylogeography between two generalist flea species reveal a complex interaction between parasite life history and host vicariance : parasite-host association matters

    Get PDF
    Publication of this article was funded by the Stellenbosch University Open Access Fund.Background: In parasitic taxa, life history traits such as microhabitat preference and host specificity can result in differential evolutionary responses to similar abiotic events. The present study investigates the influence of vicariance and host association on the genetic structure of two generalist flea species, Listropsylla agrippinae, and Chiastopsylla rossi. The taxa differ in the time spent on the host (predominantly fur vs. nest) and level of host specificity. Results: A total of 1056 small mammals were brushed to collect 315 fleas originating from 20 geographically distinct localities in South Africa. Phylogeographic genetic structure of L. agrippinae and C. rossi were determined by making use of 315 mitochondrial COII and 174 nuclear EF1-α sequences. Both parasites show significant genetic differentiation among the majority of the sampling sites confirming limited dispersal ability for fleas. The generalist fur flea with a narrower host range, L. agrippinae, displayed geographic mtDNA spatial genetic structure at the regional scale and this pattern is congruent with host vicariance. The dating of the divergence between the L. agrippinae geographic clades co-insides with paleoclimatic changes in the region approximately 5.27 Ma and this provides some evidence for a co-evolutionary scenario. In contrast, the more host opportunistic nest flea, C. rossi, showed a higher level of mtDNA and nDNA spatial genetic structure at the inter-populational scale, most likely attributed to comparatively higher restrictions to dispersal. Conclusions: In the present study, the evolutionary history of the flea species could best be explained by the association between parasite and host (time spent on the host). The phylogeographic pattern of the fur flea with a narrower host range correspond to host spatial genetic structures, while the pattern in the host opportunistic nest flea correspond to higher genetic divergences between sampling localities that may also be associated with higher effective population sizes. These findings suggest that genetic exchange among localities are most likely explained by differences in the dispersal abilities and life histories of the flea species.http://www.biomedcentral.com/content/pdf/s12862-015-0389-y.pdfPublishers' Versio

    Comparative phylogeography between two generalist flea species reveal a complex interaction between parasite life history and host vicariance : parasite-host association matters

    Get PDF
    CITATION: Van der Mescht, L., Matthee, S. & Matthee, C. A. 2015. Comparative phylogeography between two generalist flea species reveal a complex interaction between parasite life history and host vicariance : parasite-host association matters. BMC Evolutionary Biology, 15:105, doi:10.1186/s12862-015-0389-y.The original publication is available at http://bmcevolbiol.biomedcentral.comBackground: In parasitic taxa, life history traits such as microhabitat preference and host specificity can result in differential evolutionary responses to similar abiotic events. The present study investigates the influence of vicariance and host association on the genetic structure of two generalist flea species, Listropsylla agrippinae, and Chiastopsylla rossi. The taxa differ in the time spent on the host (predominantly fur vs. nest) and level of host specificity. Results: A total of 1056 small mammals were brushed to collect 315 fleas originating from 20 geographically distinct localities in South Africa. Phylogeographic genetic structure of L. agrippinae and C. rossi were determined by making use of 315 mitochondrial COII and 174 nuclear EF1-α sequences. Both parasites show significant genetic differentiation among the majority of the sampling sites confirming limited dispersal ability for fleas. The generalist fur flea with a narrower host range, L. agrippinae, displayed geographic mtDNA spatial genetic structure at the regional scale and this pattern is congruent with host vicariance. The dating of the divergence between the L. agrippinae geographic clades co-insides with paleoclimatic changes in the region approximately 5.27 Ma and this provides some evidence for a co-evolutionary scenario. In contrast, the more host opportunistic nest flea, C. rossi, showed a higher level of mtDNA and nDNA spatial genetic structure at the inter-populational scale, most likely attributed to comparatively higher restrictions to dispersal. Conclusions: In the present study, the evolutionary history of the flea species could best be explained by the association between parasite and host (time spent on the host). The phylogeographic pattern of the fur flea with a narrower host range correspond to host spatial genetic structures, while the pattern in the host opportunistic nest flea correspond to higher genetic divergences between sampling localities that may also be associated with higher effective population sizes. These findings suggest that genetic exchange amonhttp://bmcevolbiol.biomedcentral.com/articles/10.1186/s12862-015-0389-yPublisher's versio

    Range expansion of the economically important Asiatic blue tick, Rhipicephalus microplus, in South Africa

    Get PDF
    CITATION: Nyangiwe, N., et al. 2017. Range expansion of the economically important Asiatic blue tick, Rhipicephalus microplus, in South Africa. Journal of the South African Veterinary Association, 88:a1482, doi:10.4102/jsava.v88i0.1482.The original publication is available at https://jsava.co.zaThe Asiatic blue tick, Rhipicephalus microplus, a known vector of bovine babesiosis and bovine anaplasmosis, is of great concern in the cattle industry. For this reason, detailed knowledge of the distribution of R. microplus is vital. Currently, R. microplus is believed to be associated mainly with the northern and eastern Savanna and Grassland vegetation in South Africa. The objective of the study was to record the distribution of R. microplus, and the related endemic Rhipicephalus decoloratus, in the central-western region of South Africa that comprises Albany Thicket, Fynbos and Savanna vegetation. In this survey, ticks were collected from 415 cattle in four provinces (Eastern Cape, Northern Cape and Western Cape and Free State provinces) and from the vegetation in the Eastern Cape province of South Africa between October 2013 and September 2015. More than 8000 ticks were collected from cattle at 80 localities of which R. microplus was present at 64 localities and R. decoloratus at 47 localities. A total of 7969 tick larvae were recorded from the vegetation at 20 localities of which 6593 were R. microplus and 1131 were R. decoloratus. Rhipicephalus microplus was recorded in each of the regions that were sampled. Rhipicephalus microplus is now present throughout the coastal region of the Eastern Cape province and at multiple localities in the north-eastern region of the Northern Cape province. It was also recorded in the western region of the Western Cape province and one record was made for the Free State province. The observed range changes may be facilitated by the combined effects of environmental adaptability by the tick and the movement of host animals.https://jsava.co.za/index.php/jsava/article/view/1482Publisher's versio
    corecore