89 research outputs found

    Biomarkers for site-specific response to neoadjuvant chemotherapy in epithelial ovarian cancer: relating MRI changes to tumour cell load and necrosis.

    Get PDF
    Funder: We acknowledge funding from Cancer Research UK BIDD grant C1353/A12762 and Cancer Research UK and Engineering and Physical Sciences Research Council support to the Cancer Imaging Centre at the Institute of Cancer Research and Royal Marsden Hospital in association with the Medical Research Council and Department of Health C1060/A10334, C1060/A16464 and National Health Service funding to the National Institute for Health Research Biomedical Research Centres at Royal Marsden Hospital/Institute of Cancer Research and Cambridge, Experimental Cancer Medicine Centres, the Clinical Research Facility in Imaging, and the Cancer Research Network. We are also grateful for financial support from Addenbrooke’s Charitable Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the National Health Service, the National Institute for Health Research or the Department of Health.BACKGROUND: Diffusion-weighted magnetic resonance imaging (DW-MRI) potentially interrogates site-specific response to neoadjuvant chemotherapy (NAC) in epithelial ovarian cancer (EOC). METHODS: Participants with newly diagnosed EOC due for platinum-based chemotherapy and interval debulking surgery were recruited prospectively in a multicentre study (n = 47 participants). Apparent diffusion coefficient (ADC) and solid tumour volume (up to 10 lesions per participant) were obtained from DW-MRI before and after NAC (including double-baseline for repeatability assessment in n = 19). Anatomically matched lesions were analysed after surgical excision (65 lesions obtained from 25 participants). A trained algorithm determined tumour cell fraction, percentage tumour and percentage necrosis on histology. Whole-lesion post-NAC ADC and pre/post-NAC ADC changes were compared with histological metrics (residual tumour/necrosis) for each tumour site (ovarian, omental, peritoneal, lymph node). RESULTS: Tumour volume reduced at all sites after NAC. ADC increased between pre- and post-NAC measurements. Post-NAC ADC correlated negatively with tumour cell fraction. Pre/post-NAC changes in ADC correlated positively with percentage necrosis. Significant correlations were driven by peritoneal lesions. CONCLUSIONS: Following NAC in EOC, the ADC (measured using DW-MRI) increases differentially at disease sites despite similar tumour shrinkage, making its utility site-specific. After NAC, ADC correlates negatively with tumour cell fraction; change in ADC correlates positively with percentage necrosis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT01505829

    A Multi-Variant, Viral Dynamic Model of Genotype 1 HCV to Assess the in vivo Evolution of Protease-Inhibitor Resistant Variants

    Get PDF
    Variants resistant to compounds specifically targeting HCV are observed in clinical trials. A multi-variant viral dynamic model was developed to quantify the evolution and in vivo fitness of variants in subjects dosed with monotherapy of an HCV protease inhibitor, telaprevir. Variant fitness was estimated using a model in which variants were selected by competition for shared limited replication space. Fitness was represented in the absence of telaprevir by different variant production rate constants and in the presence of telaprevir by additional antiviral blockage by telaprevir. Model parameters, including rate constants for viral production, clearance, and effective telaprevir concentration, were estimated from 1) plasma HCV RNA levels of subjects before, during, and after dosing, 2) post-dosing prevalence of plasma variants from subjects, and 3) sensitivity of variants to telaprevir in the HCV replicon. The model provided a good fit to plasma HCV RNA levels observed both during and after telaprevir dosing, as well as to variant prevalence observed after telaprevir dosing. After an initial sharp decline in HCV RNA levels during dosing with telaprevir, HCV RNA levels increased in some subjects. The model predicted this increase to be caused by pre-existing variants with sufficient fitness to expand once available replication space increased due to rapid clearance of wild-type (WT) virus. The average replicative fitness estimates in the absence of telaprevir ranged from 1% to 68% of WT fitness. Compared to the relative fitness method, the in vivo estimates from the viral dynamic model corresponded more closely to in vitro replicon data, as well as to qualitative behaviors observed in both on-dosing and long-term post-dosing clinical data. The modeling fitness estimates were robust in sensitivity analyses in which the restoration dynamics of replication space and assumptions of HCV mutation rates were varied

    Hepatitis E virus: Western Cape, South Africa

    Get PDF
    AIM To conduct a prospective assessment of anti-hepatitis E virus (HEV) IgG seroprevalence in the Western Cape Province of South Africa in conjunction with evaluating risk factors for exposure. METHODS Consenting participants attending clinics and wards of Groote Schuur, Red Cross Children's Hospital and their affiliated teaching hospitals in Cape Town, South Africa, were sampled. Healthy adults attending blood donor clinics were also recruited. Patients with known liver disease were excluded and all major ethnic/race groups were included to broadly represent local demographics. Relevant demographic data was captured at the time of sampling using an interviewer-administered confidential questionnaire. Human immunodeficiency virus (HIV) status was self-disclosed. HEV IgG testing was performed using the Wantai assay. RESULTS HEV is endemic in the region with a seroprevalence of 27.9% (n = 324/1161) 95%CI: 25.3%-30.5% (21.9% when age-adjusted) with no significant differences between ethnic groups or HIV status. Seroprevalence in children is low but rapidly increases in early adulthood. With univariate analysis, age ? 30 years old, pork and bacon/ham consumption suggested risk. In the multivariate analysis, the highest risk factor for HEV IgG seropositivity (OR = 7.679, 95%CI: 5.38-10.96, p < 0.001) was being 30 years or older followed by pork consumption (OR = 2.052, 95%CI: 1.39-3.03, p < 0.001). A recent clinical case demonstrates that HEV genotype 3 may be currently circulating in the Western Cape. CONCLUSION Hepatitis E seroprevalence was considerably higher than previously thought suggesting that hepatitis E warrants consideration in any patient pre

    Counteracting Quasispecies Adaptability: Extinction of a Ribavirin-Resistant Virus Mutant by an Alternative Mutagenic Treatment

    Get PDF
    [Background] Lethal mutagenesis, or virus extinction promoted by mutagen-induced elevation of mutation rates of viruses, may meet with the problem of selection of mutagen-resistant variants, as extensively documented for standard, nonmutagenic antiviral inhibitors. Previously, we characterized a mutant of foot-and-mouth disease virus that included in its RNA-dependent RNA polymerase replacement M296I that decreased the sensitivity of the virus to the mutagenic nucleoside analogue ribavirin.[Methodology and Principal Findings] Replacement M296I in the viral polymerase impedes the extinction of the mutant foot-and-mouth disease virus by elevated concentrations of ribavirin. In contrast, wild type virus was extinguished by the same ribavirin treatment and, interestingly, no mutants resistant to ribavirin were selected from the wild type populations. Decreases of infectivity and viral load of the ribavirin-resistant M296I mutant were attained with a combination of the mutagen 5-fluorouracil and the non-mutagenic inhibitor guanidine hydrocloride. However, extinction was achieved with a sequential treatment, first with ribavirin, and then with a minimal dose of 5-fluorouracil in combination with guanidine hydrochloride. Both, wild type and ribavirin-resistant mutant M296I exhibited equal sensitivity to this combination, indicating that replacement M296I in the polymerase did not confer a significant cross-resistance to 5-fluorouracil. We discuss these results in relation to antiviral designs based on lethal mutagenesis[Conclusions] (i) When dominant in the population, a mutation that confers partial resistance to a mutagenic agent can jeopardize virus extinction by elevated doses of the same mutagen. (ii) A wild type virus, subjected to identical high mutagenic treatment, need not select a mutagen-resistant variant, and the population can be extinguished. (iii) Extinction of the mutagen-resistant variant can be achieved by a sequential treatment of a high dose of the same mutagen, followed by a combination of another mutagen with an antiviral inhibitor.Work supported by grants BFU2005-00863, BFU2008-02816/BMC, Proyecto Intramural de Frontera del CSIC 200820FO191, FIPSE 36558/06, and Fundacio´n Ramo´n Areces. CIBERehd is funded by Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewe

    Potential Benefits of Sequential Inhibitor-Mutagen Treatments of RNA Virus Infections

    Get PDF
    Lethal mutagenesis is an antiviral strategy consisting of virus extinction associated with enhanced mutagenesis. The use of non-mutagenic antiviral inhibitors has faced the problem of selection of inhibitor-resistant virus mutants. Quasispecies dynamics predicts, and clinical results have confirmed, that combination therapy has an advantage over monotherapy to delay or prevent selection of inhibitor-escape mutants. Using ribavirin-mediated mutagenesis of foot-and-mouth disease virus (FMDV), here we show that, contrary to expectations, sequential administration of the antiviral inhibitor guanidine (GU) first, followed by ribavirin, is more effective than combination therapy with the two drugs, or than either drug used individually. Coelectroporation experiments suggest that limited inhibition of replication of interfering mutants by GU may contribute to the benefits of the sequential treatment. In lethal mutagenesis, a sequential inhibitor-mutagen treatment can be more effective than the corresponding combination treatment to drive a virus towards extinction. Such an advantage is also supported by a theoretical model for the evolution of a viral population under the action of increased mutagenesis in the presence of an inhibitor of viral replication. The model suggests that benefits of the sequential treatment are due to the involvement of a mutagenic agent, and to competition for susceptible cells exerted by the mutant spectrum. The results may impact lethal mutagenesis-based protocols, as well as current antiviral therapies involving ribavirin
    corecore