217 research outputs found
Character D-modules via Drinfeld center of Harish-Chandra bimodules
The category of character D-modules is realized as Drinfeld center of the abelian monoidal category of Harish-Chandra bimodules. Tensor product of Harish-Chandra bimodules is related to convolution of D-modules via the long intertwining functor (Radon transform) by a result of Beilinson and Ginzburg (Represent. Theory 3, 1–31, 1999). Exactness property of the long intertwining functor on a cell subquotient of the Harish-Chandra bimodules category shows that the truncated convolution category of Lusztig (Adv. Math. 129, 85–98, 1997) can be realized as a subquotient of the category of Harish-Chandra bimodules. Together with the description of the truncated convolution category (Bezrukavnikov et al. in Isr. J. Math. 170, 207–234, 2009) this allows us to derive (under a mild technical assumption) a classification of irreducible character sheaves over ℂ obtained by Lusztig by a different method.
We also give a simple description for the top cohomology of convolution of character sheaves over ℂ in a given cell modulo smaller cells and relate the so-called Harish-Chandra functor to Verdier specialization in the De Concini–Procesi compactification.United States. Defense Advanced Research Projects Agency (grant HR0011-04-1-0031)National Science Foundation (U.S.) (grant DMS-0625234)National Science Foundation (U.S.) (grant DMS-0854764)AG Laboratory HSE (RF government grant, ag. 11.G34.31.0023)Russian Foundation for Basic Research (grant 09-01-00242)Ministry of Education and Science of the Russian Federation (grant No. 2010-1.3.1-111-017-029)Science Foundation of the NRU-HSE (award 11-09-0033)National Science Foundation (U.S.) (grant DMS-0602263
The quantum Casimir operators of \Uq and their eigenvalues
We show that the quantum Casimir operators of the quantum linear group
constructed in early work of Bracken, Gould and Zhang together with one extra
central element generate the entire center of \Uq. As a by product of the
proof, we obtain intriguing new formulae for eigenvalues of these quantum
Casimir operators, which are expressed in terms of the characters of a class of
finite dimensional irreducible representations of the classical general linear
algebra.Comment: 10 page
Finite dimensional representations of at arbitrary
A method is developed to construct irreducible representations(irreps) of the
quantum supergroup in a systematic fashion. It is shown that
every finite dimensional irrep of this quantum supergroup at generic is a
deformation of a finite dimensional irrep of its underlying Lie superalgebra
, and is essentially uniquely characterized by a highest weight. The
character of the irrep is given. When is a root of unity, all irreps of
are finite dimensional; multiply atypical highest weight irreps
and (semi)cyclic irreps also exist. As examples, all the highest weight and
(semi)cyclic irreps of are thoroughly studied.Comment: 21 page
Hecke algebras of finite type are cellular
Let \cH be the one-parameter Hecke algebra associated to a finite Weyl
group , defined over a ground ring in which ``bad'' primes for are
invertible. Using deep properties of the Kazhdan--Lusztig basis of \cH and
Lusztig's \ba-function, we show that \cH has a natural cellular structure
in the sense of Graham and Lehrer. Thus, we obtain a general theory of ``Specht
modules'' for Hecke algebras of finite type. Previously, a general cellular
structure was only known to exist in types and .Comment: 14 pages; added reference
Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras
We construct an explicit isomorphism between blocks of cyclotomic Hecke
algebras and (sign-modified) Khovanov-Lauda algebras in type A. These
isomorphisms connect the categorification conjecture of Khovanov and Lauda to
Ariki's categorification theorem. The Khovanov-Lauda algebras are naturally
graded, which allows us to exhibit a non-trivial Z-grading on blocks of
cyclotomic Hecke algebras, including symmetric groups in positive
characteristic.Comment: 32 pages; minor changes to section
On the elliptic nonabelian Fourier transform for unipotent representations of p-adic groups
In this paper, we consider the relation between two nonabelian Fourier
transforms. The first one is defined in terms of the Langlands-Kazhdan-Lusztig
parameters for unipotent elliptic representations of a split p-adic group and
the second is defined in terms of the pseudocoefficients of these
representations and Lusztig's nonabelian Fourier transform for characters of
finite groups of Lie type. We exemplify this relation in the case of the p-adic
group of type G_2.Comment: 17 pages; v2: several minor corrections, references added; v3:
corrections in the table with unipotent discrete series of G
Fourier transform and the Verlinde formula for the quantum double of a finite group
A Fourier transform S is defined for the quantum double D(G) of a finite
group G. Acting on characters of D(G), S and the central ribbon element of D(G)
generate a unitary matrix representation of the group SL(2,Z). The characters
form a ring over the integers under both the algebra multiplication and its
dual, with the latter encoding the fusion rules of D(G). The Fourier transform
relates the two ring structures. We use this to give a particularly short proof
of the Verlinde formula for the fusion coefficients.Comment: 15 pages, small errors corrected and references added, version to
appear in Journal of Physics
Cohomology of the minimal nilpotent orbit
We compute the integral cohomology of the minimal non-trivial nilpotent orbit
in a complex simple (or quasi-simple) Lie algebra. We find by a uniform
approach that the middle cohomology group is isomorphic to the fundamental
group of the sub-root system generated by the long simple roots. The modulo
reduction of the Springer correspondent representation involves the sign
representation exactly when divides the order of this cohomology group.
The primes dividing the torsion of the rest of the cohomology are bad primes.Comment: 29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin
sequence only, corrected typo
Quantum spin coverings and statistics
SL_q(2) at odd roots of unity q^l =1 is studied as a quantum cover of the
complex rotation group SO(3,C), in terms of the associated Hopf algebras of
(quantum) polynomial functions. We work out the irreducible corepresentations,
the decomposition of their tensor products and a coquasitriangular structure,
with the associated braiding (or statistics). As an example, the case l=3 is
discussed in detail.Comment: 15 page
Trace as an alternative decategorification functor
Categorification is a process of lifting structures to a higher categorical
level. The original structure can then be recovered by means of the so-called
"decategorification" functor. Algebras are typically categorified to additive
categories with additional structure and decategorification is usually given by
the (split) Grothendieck group. In this expository article we study an
alternative decategorification functor given by the trace or the zeroth
Hochschild--Mitchell homology. We show that this form of decategorification
endows any 2-representation of the categorified quantum sl(n) with an action of
the current algebra U(sl(n)[t]) on its center.Comment: 47 pages with tikz figures. arXiv admin note: text overlap with
arXiv:1405.5920 by other author
- …