Categorification is a process of lifting structures to a higher categorical
level. The original structure can then be recovered by means of the so-called
"decategorification" functor. Algebras are typically categorified to additive
categories with additional structure and decategorification is usually given by
the (split) Grothendieck group. In this expository article we study an
alternative decategorification functor given by the trace or the zeroth
Hochschild--Mitchell homology. We show that this form of decategorification
endows any 2-representation of the categorified quantum sl(n) with an action of
the current algebra U(sl(n)[t]) on its center.Comment: 47 pages with tikz figures. arXiv admin note: text overlap with
arXiv:1405.5920 by other author