12 research outputs found
Flower nectar trichome structure of carnivorous plants from the genus butterworts Pinguicula L. (Lentibulariaceae)
Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely
diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the
flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare
the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the
species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and
P. esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims.
We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural
similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary
trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size
of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cellwall ingrowths in the terminal
cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from
other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula
and Utricularia
Do food trichomes occur in Pinguicula (Lentibulariaceae) flowers?
• Background and Aims Floral food bodies (including edible trichomes) are a form of floral reward for pollinators. This type of nutritive reward has been recorded in several angiosperm families: Annonaceae, Araceae, Calycanthaceae, Eupomatiaceae, Himantandraceae, Nymphaeaceae, Orchidaceae, Pandanaceae and Winteraceae. Although these bodies are very diverse in their structure, their cells contain food material: starch grains, protein bodies or lipid droplets. In Pinguicula flowers, there are numerous multicellular clavate trichomes. Previous authors have proposed that these trichomes in the Pinguicula flower play the role of ‘futterhaare’ (‘feeding hairs’) and are eaten by pollinators. The main aim of this study was to investigate whether the floral non-glandular trichomes of Pinguicula contain food reserves and thus are a reward for pollinators. The trichomes from the Pinguicula groups, which differ in their taxonomy (species from the subgenera: Temnoceras, Pinguicula and Isoloba) as well as the types of their pollinators (butterflies/flies and bees/hummingbirds), were examined. Thus, it was determined whether there are any connections between the occurrence of food trichomes and phylogeny position or pollination biology. Additionally, we determined the phylogenetic history of edible trichomes and pollinator evolution in the Pinguicula species. • Methods The species that were sampled were: Pinguicula moctezumae, P. esseriana, P. moranensis, P. emarginata, P. rectifolia, P. mesophytica, P. hemiepiphytica, P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia, P. gigantea, P. lusitanica, P. alpina and P. vulgaris. Light microscopy, histochemistry, and scanning and transmission electron microscopy were used to address our aims with a phylogenetic perspective based on matK/trnK DNA sequences. • Key Results No accumulation of protein bodies or lipid droplets was recorded in the floral non-glandular trichomes of any of the analysed species. Starch grains occurred in the cells of the trichomes of the bee-/fly-pollinated species: P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea, but not in P. alpina or P. vulgaris. Moreover, starch grains were not recorded in the cells of the trichomes of the Pinguicula species that have long spurs, which are pollinated by Lepidoptera (P. moctezumae, P. esseriana, P. moranensis, P. emarginata and P. rectifolia) or birds (P. mesophytica and P. hemiepihytica), or in species with a small and whitish corolla that selfpollinate (P. lusitanica). The results on the occurrence of edible trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. • Conclusion Floral non-glandular trichomes play the role of edible trichomes in some Pinguicula species (P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea), which are mainly classified as bee-pollinated species that had originated from Central and South America. It seems that in the Pinguicula that are pollinated by other pollinator groups (Lepidoptera and hummingbirds), the non-glandular trichomes in the flowers play a role other than that
of a floral reward for their pollinators. Edible trichomes are symplesiomorphic for the Pinguicula species, and thus do not support a monophyletic group such as a synapomorphy. Nevertheless, edible trichomes are derived and are possibly a specialization for fly and bee pollinators by acting as a food reward for these visitors
Morphological, anatomical, and phytochemical studies of Carlina acaulis L. cypsela
Carlina acaulis L. has a long tradition of use in folk medicine. The chemical composition of the roots and green parts of the plant is quite well known. There is the lowest amount of data on the cypsela (fruit) of this plant. In this study, the microscopic structures and the chemical composition of the cypsela were investigated. Preliminary cytochemical studies of the structure of the Carlina acaulis L. cypsela showed the presence of substantial amounts of protein and lipophilic substances. The chemical composition of the cypsela was investigated using spectrophotometry, gas chromatography with mass spectrometry, and high-performance liquid chromatography with spectrophotometric and fluorescence detection. The cypsela has been shown to be a rich source of macro- and microelements, vegetable oil (25%), α-tocopherol (approx. 2 g/kg of oil), protein (approx. 36% seed weight), and chlorogenic acids (approx. 22 g/kg seed weight). It also contains a complex set of volatile compounds. The C. acaulis cypsela is, therefore, a valuable source of nutrients and bioactive substances
Immunoexpression of the steroidogenic pathway proteins in the bank vole females after prenatal exposure to flutamide
W niniejszej pracy badano wpływ niesteroidowego antyandrogenu - flutamidu podawanego prenatalnie w V dniu ciąży na morfologię oraz funkcję jajnika nornicy rudej (Clethrionomys glareolus S.) I pokolenia. Do badań wykorzystano jajniki pobrane od 3-miesięcznych nornic hodowanych w warunkach dnia długiego (DD). Aby ocenić ewentualny wpływ flutamidu na rozwój struktur tkanki jajnika wykonano standardowe barwienie hematoksyliną oraz eozyną, a barwieniem immunohistochemicznym uwidoczniono rozmieszczenie receptora androgenowego AR (ang. Androgen Receptor) oraz enzymu 3β-HSD (ang. 3β-hydroxysteroid dehydrogenase). Zawartość hormonów steroidowych w homogenatach jajników zmierzono metodą RIA. U nornic traktowanych in utero flutamidem zaobserwowano znaczące różnice w morfologii jajników, mniejszą liczbę pęcherzyków oraz wyraźne opóźnienie ich rozwoju w porównaniu z jajnikami samic kontrolnych. Flutamid powodował również występowanie większej liczby pęcherzyków atretycznych, w porównaniu do kontroli. Zaskakująco u nornic nastrzykiwanych flutamidem wykazano obecność ciałek żółtych, co wskazuje na wystąpienie spontanicznej owulacji, najprawdopodobniej indukowanej działaniem antyandrogenu. Analiza immunohistochemiczna wykazała obniżenie immunoekspresji AR oraz enzymu 3β-HSD u zwierząt z grupy doświadczalnej. Jądrową immunoekspresję AR obserwowano w komórkach ziarnistych, osłonki wewnętrznej, interstycjalnych oraz w komórkach nabłonka powierzchniowego, podczas gdy cytoplazmatyczną immunoekspresję enzymu 3β-HSD w komórkach interstycjalnych, osłonki wewnętrznej oraz w oocytach, (ale tylko w grupie doświadczalnej). Dodatkowo pomiary zawartości hormonów steroidowych, w homogenatach jajników, wykazały ich wyższą zawartość u nornic wystawionych na działanie flutamidu. Dominującym hormonem był progesteron.In this study, the influence of a nonsteroidal antiandrogen called flutamide on the morphology and function of bank vole ovaries (Clethrionomys glareolus S.) was investigated. Flutamide was administreted to pregnant bank voles at day 5. of gestation. The study was performed on the ovaries obtained from 3-months old bank voles (first generation), which were kept in a long photoperiod. In order to evaluate the possible impact of flutamide on the ovarian development, serial sections were stained with hematoxylin and eosin, while immunohistochemistry was used to reveal androgen receptor (AR) and 3β-hydroxysteroid dehydrogenase enzyme (3β-HSD) localization. The content of steroid hormones in ovarian homogenates was established by a radio immunoassay (RIA). In bank voles treated with flutamide in utero significant differences in ovarian morphology have been observed. There number of ovarian follicles was smaller and there was delay in their development, when compared with the control. Flutamide also caused the presence of a greater number of atretic follicles. Surprisingly, in bank voles treated with flutamide the presence of corpora lutea was observed, which suggests the occurrence of spontaneous ovulation, likely induced by that antiandrogen. Immunohistochemical analysis indicated lower immunoexpression of AR and 3β-HSD enzyme in the experimental group. Nuclear immunoexpression of AR was found in granulosa, theca and interstitial cells and in cells of the epithelium surface, whereas cytoplasmic immunoexpression of 3β-HSD enzyme was observed in interstitial and thecal cells as well as in the oocytes (but only in the experimental group). Additionally, measurements of steroid hormone levels in ovarian homogenates have shown higher content of steroids in bank voles prenataly exposed to flutamide than in control animals. The dominant hormone was progesterone
Pheromones and their function in male reproduction
Hormony oraz feromony mają duży wpływ na rozród samców. Męskie hormony płciowe umożliwiają wykształcenie w pełni funkcjonalnego męskiego układu rozrodczego, natomiast feromony jako związki niosące informacje dla drugiego osobnika ułatwiają zwierzętom komunikację wewnątrzgatunkową. W gonadach męskich, znajdują się komórki Leydiga, które odpowiadają za syntezę oraz wydzielanie testosteronu. Testosteron powstaje w procesie zwanym steroidogenezą. W jądrach dochodzi również do produkcji zdrowych i zdolnych do zapłodnienia komórki jajowej gamet męskich. Powstają one w procesie zwanym spermatogenezą, która zachodzi w nabłonku plemnikotwórczym pomiędzy komórkami Sertoliego. Plemniki uwolnione do światła kanalików plemnikotwórczych wędrują do najądrza, w którym dochodzi do ich dojrzewania i to właśnie tam nabywają zdolność do zapładniania. Feromony jako związki potrzebne do prawidłowej komunikacji wewnątrzgatunkowej, są również ważne do prawidłowego rozrodu. Umożliwiają one identyfikację osobników gotowych do rozrodu ułatwiając tym samym kojarzenie się par. Źródłem feromonów są wydzieliny gruczołów skórnych takie jak gruczoł potowy czy gruczoł łojowy, ale także są one deponowane wraz z kałem oraz moczem (największa ich ilość jest deponowana z moczem). Wszystkie ssaki zarówno mikrosmatyczne jak i makrosmatyczne percypują feromony za pomocą głównego narządu węchowego. Zwierzęta makrosmatyczne posiadają również dodatkowy narząd węchowy tzw. narząd womeronasalny, który działa synergistycznie z głównym narządem węchowym dając w efekcie bardzo dobrze wykształcony zmysł węchu. Udało się zidentyfikować wiele feromonów samic wydalanych wraz z moczem. Związki te mają różnorodne działanie na dojrzałe płciowo samce. W większości wzmagają one popęd seksualny oraz wywołują charakterystyczne zachowanie u samców zwane flehmenem. Jednak spośród zidentyfikowanych feromonów udało się również wykryć takie, które wykazywały odwrotne działanie na samców i powodowały spadek popędu seksualnego. Na zakończenie przedstawiony został feromon knura androstenon. Związek ten ulega różnym przemianom metabolicznym. Może on odkładać się w tkance tłuszczowej wchodząc w skład mieszaniny związków powodujących nieprzyjemny zapach mięsa tzw. „zapach knura”. Androstenon również gromadzony jest w gruczole podszczękowym. Wydzielany wraz z wydzieliną tego gruczołu pełni funkcję feromonu, który percypowany przez lochy umożliwia im identyfikację gotowego do rozrodu samca.Hormones and pheromones have a significant impact on reproduction of males. Male sex hormones allow formation of male gonads, whereas pheromones as compounds carrying information for another individual, help animals in intraspecies communication. The secretion of testosterone occurs in Leydig cells of the gonad. Testosterone is formed in process called steroidogenesis. In the male gonad male gametes are also produced. They are formed in the process known as spermatogenesis. This takes place in the seminiferous epithelium between the Sertoli cells. The sperm are released into the lumen of the seminiferous tubules. They are transported to the epididymis, where they maturate and acquire the ability to fertilize. Pheromones as compounds necessary for a successful intraspecies communication are also important for the proper reproduction in mammals. They allow the identification of individuals ready to breed thus facilitating the mating - process. The source of pheromones comes from skin gland secretions such as sweat gland and sebaceous gland. Pheromones are also deposited together with the feces and urine (the highest amount is deposited in urine). All mammals, both microsmatic and macrosmatic, detect pheromones with the main olfactory organ. Macrosmatic animals in addition to that have additional olfactory organ so called vomeronasal organ, which works synergistically with the main olfactory organ. This results in a very well developed sense of smell. The number of female pheromones excreted in the urine have been identified. These compounds have a variety of effects on the sexually mature males. The majority of them, enhance sex drive and cause characteristic behavior of the males called flehmen. Nonetheless, the identified pheromones include those that have the opposite effect on males. The aforementioned pheromones caused a decrease in the sex drive. Finally a boar pheromone called androstenone has been presented. This compound is metabolised in various ways. It can be accumulated in the fatty tissue going into a mixture of compounds, which cause unpleasant smell of meat called “boar taint”. Androstenone is also accumulated in the salivary gland. It is secreted together with the secretion of the salivary gland and acts as pheromone which once detected by the sow facilitates identification of the right male for reproduction
Structural features of carnivorous plant (Genlisea, Utricularia) tubers as abiotic stress resistance organs
Carnivorous plants fromthe Lentibulariaceae form a variety of standard and novel vegetative
organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from
the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus
to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two
taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and
Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic
trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state
reconstruction. All examined species contained mainly starch as histologically observable reserves.
The ancestral state reconstruction showed that specialized organs such as turions evolved once and
tubers at least 12 times from stolons in Lentibulariaceae. Di erent from other clades, tubers probably
evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage
structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form
starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank
that protects the species in their fire-prone and seasonally desiccating environments