51 research outputs found

    Observations on the assay of silver in the humid way

    Get PDF
    n/

    Pushing the limits of energetic materials - the synthesis and characterization of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate

    Get PDF
    The safe preparation and characterization (XRD, NMR and vibrational spectroscopy, DSC, mass spectrometry, sensitivities) of a new explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) that outperforms all other commonly used explosive materials is detailed. While much publicized high-performing explosives, such as octanitrocubane and CL-20, have been at the forefront of public awareness, this compound differs in that it is simple and cheap to prepare from commonly available chemicals. TKX-50 expands upon the newly exploited field of tetrazole oxide chemistry to produce a material that not only is easily prepared and exceedingly powerful, but also possesses the required thermal insensitivity, low toxicity, and safety of handling to replace the most commonly used military explosive, RDX (1,3,5-trinitro-1,3,5-triazacyclohexane). In addition, the crystal structures of the intermediates 5,5'-bistetrazole-1,1'-diol dihydrate, 5,5'-bistetrazole-1,1'-diol dimethanolate and dimethylammonium 5,5'-bistetrazole-1,1'-diolate were determined and presented

    Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol) has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR) spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT) IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements.</p> <p>Results</p> <p>During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p < 0.0001, RMSE = 0.279% vol). The applicability of the device was further proven for the analysis of wines during fermentation, and for the determination of unrecorded alcohol (i.e. non-commercial or illicit products).</p> <p>Conclusions</p> <p>The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample). The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the process monitoring of fermentations, or the evaluation of unrecorded alcohols.</p

    Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus

    Get PDF
    This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed

    Microscopic chemical reactions of some of the polythionic acids

    No full text
    corecore