127 research outputs found

    Reduced Atrial Tachyarrhythmia Susceptibility After Upgrade of Conventional Implanted Pulse Generator to Cardiac Resynchronization Therapy in Patients with Heart Failure

    Get PDF
    OBJECTIVES: We sought to identify the impact of cardiac resynchronization therapy (CRT) on atrial tachyarrhythmia (AT) susceptibility in patients with left ventricular (LV) systolic dysfunction in whom worsening heart failure (HF) resulted in upgrade from conventional dual-chamber pulse generator to cardiac resynchronization therapy-defibrillator (CRT-D). BACKGROUND: Cardiac resynchronization therapy with a defibrillator improves survival rates and symptoms in patients with LV systolic dysfunction but little is known about its effects on AT incidence in the same patient population. METHODS: Twenty-eight consecutive HF patients who underwent device upgrade to CRT-D were included. Patients had \u3e or =2 device interrogations in the 1 year before upgrade and \u3e or =3 interrogations in the 18- to 24-month follow-up after upgrade. Echocardiographic parameters were assessed before and at 3 to 6 months after CRT-D. Additional observations included number of hospital stays, HF clinical status, and concomitant pharmacological therapy. By virtue of this study design, each patient served as his/her own control. Statistical analysis was performed by 2-tailed paired t test and with nonparametric tests where appropriate. RESULTS: Within 3 months after CRT, the number of HF patients with documented AT decreased significantly from the immediate pre-CRT value and tended to decline with time. At 1-year follow-up, 90% of patients were AT-free compared with 14% of patients 3 months before CRT (p \u3c 0.001). Furthermore, the number of AT episodes/year and their maximum duration decreased after CRT (mean +/- SD; 181 +/- 50 vs. 50 +/- 20.2, p \u3c 0.05, and 220.8 +/- 87 s vs. 28 +/- 21 s, p \u3c 0.05, respectively). Finally, CRT was associated with improved LV ejection fraction (mean +/- SD; from 26 +/- 5.3% to 31 +/- 7%, p \u3c 0.001) and reduced number of HF or arrhythmia hospital stays (p \u3c 0.05). CONCLUSIONS: Our findings support the view that CRT might decrease AT susceptibility in HF patients with LV systolic dysfunctio

    PHAR 361.01: Pharmaceutical Sciences Laboratory

    Get PDF

    PHAR 361.01: Pharmaceutical Sciences Laboratory

    Get PDF

    Relationship of Paroxysmal Atrial Tachyarrhythmias to Volume Overload

    Get PDF
    BACKGROUND: Clinical experience suggests that atrial tachyarrhythmias (ATs) are a frequent comorbidity in heart failure patients with left ventricular systolic dysfunction and that volume overload may increase AT susceptibility. However, substantiating this apparent relationship in free-living patients is difficult. Recently, certain implantable cardioverter-defibrillators provide, by measuring transpulmonary electric bioimpedance, an index of intrathoracic fluid status (OptiVol index [OI]). The goal of this study was to determine whether periods of greater intrathoracic fluid congestion (as detected by OI) correspond with increased AT event frequency. METHODS AND RESULTS: This analysis retrospectively assessed the relation between AT events and OI estimate of volume overload in patients with left ventricular systolic dysfunction and OI-capable implantable cardioverter-defibrillators. OI values were stratified into 3 levels: group 1, \u3c40; group 2, 40 to 60; and group 3, \u3e60. An OI threshold-crossing event was defined as OI \u3e or = 60, a value previously associated with clinically significant volume overload. Findings in 59 patients (mean left ventricular ejection fraction, 24%) with 225 follow-up visits (mean, 3.8 visits per patient) were evaluated. AT prevalence was 73%. AT frequency (percent of patients visits with at least 1 episode of AT since previous device interrogation) was greater in group 3 versus group 1 (P=0.0342). Finally, in terms of temporal sequence, AT episodes preceded OI threshold-crossing event in 43% of incidences, followed threshold-crossing event in 29%, and was simultaneous or indeterminate in the remainder. CONCLUSIONS: These findings not only support the view that worsening pulmonary congestion is associated with increased AT frequency in patients with left ventricular dysfunction but also suggest that AT events may be responsible for triggering episodic pulmonary congestion more often than previously suspected

    Head and thorax elevation prevents the rise of intracranial pressure during extracorporeal resuscitation in swine

    Get PDF
    Aim: Head and thorax elevation during cardiopulmonary resuscitation improves cerebral hemodynamics and ultimate neurological outcome after cardiac arrest. Its effect during extracorporeal cardiopulmonary resuscitation (E-CPR) is unknown. We tested whether this procedure could improve hemodynamics in swine treated by E-CPR. Methods and Results: Pigs were anesthetized and submitted to 15 minutes of untreated ventricular fibrillation followed by E-CPR. Animals randomly remained in flat position (flat group) or underwent head and thorax elevation since E-CPR institution (head-up group). Electric shocks were delivered after 30 minutes until the return of spontaneous circulation (ROSC). They were followed during 120 minutes after ROSC. After 30 minutes of E-CPR, ROSC was achieved in all animals, with no difference regarding blood pressure, heart rate, and extracorporeal membrane of oxygenation flow among groups. The head-up group had an attenuated increase in ICP as compared with the flat group after cardiac arrest (13 ± 1 vs. 26 ± 2 mm Hg at the end of the follow-up, respectively). Cerebral perfusion pressure tended to be higher in the head-up versus flat group despite not achieving statistical difference (66 ± 1 vs 46 ± 1 mm Hg at the end of the follow-up). Carotid blood flow and cerebral oxygen saturation were not significantly different among groups. Conclusion: During E-CPR, head and thorax elevation prevents ICP increase. Whether it could improve the ultimate neurological outcome in this situation deserves further investigation.The study was supported by grants LIVE-RESP and AREG-SHOCK from Agence Nationale pour la Recherche. Y. Levy was supported by ADEREMVeterinari

    Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation

    Get PDF
    Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged ( 2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders(Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation(FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2 –) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2 vs. 6.6 ± 0.3 m s−1; P = 0.001). These changes persisted at days 12–14, and after allometricallyscaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio ( 19%, P 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 – increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r=−0.53) and chronic (n = 7, r=−0.69; P 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n=11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspiredO2 fraction (FIO2 )=0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7±1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling
    • …
    corecore