34 research outputs found
Nonleptonic Weak Decays of Bottom Baryons
Cabibbo-allowed two-body hadronic weak decays of bottom baryons are analyzed.
Contrary to the charmed baryon sector, many channels of bottom baryon decays
proceed only through the external or internal W-emission diagrams. Moreover,
W-exchange is likely to be suppressed in the bottom baryon sector.
Consequently, the factorization approach suffices to describe most of the
Cabibbo-allowed bottom baryon decays. We use the nonrelativistic quark model to
evaluate heavy-to-heavy and heavy-to-light baryon form factors at zero recoil.
When applied to the heavy quark limit, the quark model results do satisfy all
the constraints imposed by heavy quark symmetry. The decay rates and up-down
asymmetries for bottom baryons decaying into and
are calculated. It is found that the up-down asymmetry is negative except for
decay and for decay modes with in the final
state. The prediction for
is consistent with the recent CDF measurement. We also present
estimates for decays and compare with various model
calculations.Comment: 24 pages, to appear in Phys. Rev. Uncertainties with form factor q^2
dependence are discusse
Global sensitivity analysis of a model for venous valve dynamics.
Chronic venous disease is defined as dysfunction of the venous system caused by incompetent venous valves with or without a proximal venous obstruction. Assessing the severity of the disease is challenging, since venous function is determined by various interacting hemodynamic factors. Mathematical models can relate these factors using physical laws and can thereby aid understanding of venous (patho-)physiology. To eventually use a mathematical model to support clinical decision making, first the model sensitivity needs to be determined. Therefore, the aim of this study is to assess the sensitivity of the venous valve model outputs to the relevant input parameters. Using a 1D pulse wave propagation model of the tibial vein including a venous valve, valve dynamics under head up tilt are simulated. A variance-based sensitivity analysis is performed based on generalized polynomial chaos expansion. Taking a global approach, individual parameter importance on the valve dynamics as well as importance of their interactions is determined. For the output related to opening state of the valve, the opening/closing pressure drop (dpvalve,0) is found to be the most important parameter. The venous radius (rvein,0) is related to venous filling volume and is consequently most important for the output describing venous filling time. Finally, it is concluded that improved assessment of rvein,0 and dpvalve,0 is most rewarding when simulating valve dynamics, as this results in the largest reduction in output uncertainty. In practice, this could be achieved using ultrasound imaging of the veins and fluid structure interaction simulations to characterize detailed valve dynamics, respectively
The use of the placebo effect in clinical medicine--ethical blunder or ethical imperative?
The current debate in medical ethics on placebos focuses mainly on their use in health research. Whereas this is certainly an important topic the discussion tends to overlook another longstanding but nevertheless highly relevant question, namely if and how the placebo effect should be employed in clinical practice. This paper describes the way the placebo effect is perceived in modern medicine and offers some historical reflections on how these perceptions have developed; discusses elements of a definition of the placebo effect; and suggests some conditions under which making use of the therapeutic potential of the placebo effect can be ethically acceptable, if not warranted