6 research outputs found

    Programmable thermocapillary shaping of thin liquid films

    Full text link
    We present a method that leverages projected light patterns as a mechanism for freeform deformations of a thin liquid film via the thermocapillary effect. We developed a closed-form solution for the inverse problem of the thin-film evolution equation, allowing to obtain the projection pattern required in order to achieve a desired topography. We experimentally implement the method using a computer controlled light projector, which illuminates any desired pattern onto the bottom of a fluidic chamber patterned with heat absorbing metal pads. The resulting heat map induces surface tension gradients in the liquid-air interface, giving rise to thermocapillary flow that deforms the liquid surface. If a polymer is used for the liquid film, it can then be photocured to yield a solid device. Based on the inverse problem solutions and using this system, we demonstrate the fabrication of several diffractive optical elements (DOEs), including phase masks for extended depth of field imaging, and for 3D localization microscopy. The entire process, from projection to solidification, is completed in less than five minutes, and yields a sub-nanometric surface quality without any post-processing.Comment: Manuscript and supplementary information combine

    Fluidic shaping and in-situ measurement of liquid lenses in microgravity

    No full text
    Abstract In the absence of gravity, surface tension dominates over the behavior of liquids. While this often poses a challenge in adapting Earth-based technologies to space, it can also provide an opportunity for novel technologies that utilize its advantages. In particular, surface tension drives a liquid body to a constant-mean-curvature shape with extremely smooth surfaces, properties which are highly beneficial for optical components. We here present the design, implementation and analysis of parabolic flight experiments demonstrating the creation and in-situ measurement of optical lenses made entirely by shaping liquids in microgravity. We provide details of the two experimental systems designed to inject the precise amount of liquid within the short microgravity timeframe provided in a parabolic flight, while also measuring the resulting lens’ characteristics in real-time using both resolution target-imaging and Shack-Hartmann wavefront sensing. We successfully created more than 20 liquid lenses during the flights. We also present video recordings of the process, from the lenses’ creation during microgravity and up until their collapse upon return to gravity. The work thus demonstrates the feasibility of creating and utilizing liquid-based optics in space

    Organization of the bacterial chromosome

    No full text
    corecore