51 research outputs found

    La senescencia foliar como factor de resistencia a la sequía en la soja (Glycine max L. Merr.)

    Get PDF
    El objetivo general de esta tesis fue determinar el papel de la senescencia foliar en la tolerancia de las plantas superiores al déficit hídrico. La aproximación experimental consistió en comparar la respuesta a la sequía de líneas casi isogénicas de soja que senescen normalmente (genotipo silvestre, ggD1D1D2D2) o con mutaciones que provocan un fenotipo stay green (genotipo GGd1d1d2d2). La combinación al estado homocigota de los genes G (dominante) y d1 y d2 (recesivos) provoca la inhibición de un amplio espectro del síndrome de senescencia foliar, manteniendo la integridad del cloroplasto cuando en el genotipo silvestre se han degradado la mayor parte de los componentes del estroma y la membrana tilacoidal. Sin embargo, se comprobó que la combinación al estado homocigota recesivo de los genes d1 y d2 también provoca una mayor sensibilidad a la sequía. Ante una situación de estrés hídrico, las hojas del mutante d1d1d2d2 (con o sin G) experimentan una deshidratación irreversible a niveles de estrés mucho menores que los necesarios para causar el mismo fenómeno en el genotipo silvestre. La deshidratación comienza en los bordes de la hoja y luego se extiende hacia el resto de la lámina, primero en las hojas basales y luego progresa hacia las apicales. La deshidratación de las hojas de GGd1d1d2d2 ocurre tanto en plántulas como en plantas al estado reproductivo sometidas a sequía. Un fenómeno similar se observa en plantas con adecuado suministro hídrico al final del ciclo vital. En el genotipo silvestre, en cambio, las hojas abscinden al final del ciclo con un alto grado de hidratura. Se efectuaron varios experimentos con el objetivo de caracterizar cuantitativamente la respuesta a la sequía del genotipo silvestre (cv. Clark) y del mutante stay green GGd1d1d2d2, a través de la medición de indicadores del estado hídrico de las hojas. El contenido relativo de agua (CRA) y el potencial agua de las hojas del mutante sometidas a un período de estrés hídrico declinaron mas rápidamente que en el genotipo silvestre. Sin embargo, la conductancia estomática disminuyó en forma semejante en las plantas de GGd1d1d2d2 y del genotipo silvestre. Tampoco hubo diferencias en el potencial soluto en el estado de hidratación máxima de hojas de plántulas de Clark y GGd1d1d2d2 sometidas previamente a sequía. Estas observaciones indican que la mayor sensibilidad a la sequía en GGd1d1d2d2 no se debe a diferencias en la capacidad para el ajuste osmótico o cierre estomático. La deshidratación de las hojas del mutante podría explicarse por una obstrucción permanente del xilema que impidiera el flujo de agua durante la sequía y luego de reasumidas las condiciones de adecuado suministro hídrico. Para probar esta hipótesis, se realizaron experimentos donde se midieron el CRA, el contenido porcentual de agua y el potencial agua de plántulas de Clark y GGd1d1d2d2 sometidas a sequía y luego rehidratadas. En estos experimentos se encontró que los indicadores del estado hídrico se recuperan en pocas horas a niveles semejantes en las hojas de Clark y en las de GGd1d1d2d2 que se han deshidratado parcialmente. De estos experimentos se puede deducir que la deshidratación de las hojas de GGd1d1d2d2 no se debe a que una obstrucción permanente del xilema impida el flujo de agua. La aplicación exógena de ácido abscísico causó una marcada reducción de la conductancia estomática tanto en el genotipo silvestre como en GGd1d1d2d2. Sin embargo, la aplicación exógena de ácido abscísico no evita la deshidratación de las hojas de GGd1d1d2d2, ni revierte el fenotipo stay green del mutante. De estos experimentos se puede concluir que la mayor sensibilidad de GGd1d1d2d2 a la sequía probablemente no está relacionada con alteraciones en la percepción, sensibilidad o biosíntesis del ácido abscísico. Dado que no se encontraron diferencias en la respuesta de la conductancia estomática de Clark y GGd1d1d2d2 frente al estrés hídrico, se examinó la pérdida de agua del mutante a través de la cutícula, midiendo la pérdida de agua de hojas mantenidas en la oscuridad y a elevada concentración de CO2, situación en la cual los estomas están cerrados. Debido a que las hojas de soja son anfiestomáticas y es imposible descartar totalmente la pérdida de agua a través de los estomas, la pérdida de agua en oscuridad y a alta concentración de CO2 se menciona aquí como transpiración superficial mínima en lugar de transpiración cuticular, reservando este último término para las superficies foliares desprovistas de estomas. La transpiración superficial mínima (Tsm) disminuyó durante la sequía en las plantas del genotipo silvestre. En GGd1d1d2d2 la disminución de la Tsm durante el tratamiento de estrés fue mucho menor. Es posible que la mayor Tsm en GGd1d1d2d2 sea debida a alteraciones en la deposición de ceras epicuticulares. Pero observaciones con el microscopio electrónico de barrido no mostraron diferencias en la morfología de las ceras epicuticulares entre el mutante y el genotipo silvestre. Para comprobar cuál (o cuales) de las mutaciones que causan el fenotipo stay green determinan la mayor sensibilidad a la sequía del mutante, se realizaron experimentos utilizando líneas casi isogénicas con diferentes combinaciones de los genes G, d1 y d2. Las plantas de todas las isolíneas fueron sometidas a sequía y se midió su contenido relativo de agua. Se encontró que las isolíneas que portaban los genes d1 y d2 al estado homocigota recesivo, al ser sometidas a estrés hídrico, experimentan la deshidratación irreversible de sus hojas. De estos experimentos se puede concluir que los genes causantes de la mayor sensibilidad a la sequía del mutante son d1 y d2 combinados. Además de los efectos sobre la tolerancia al estrés, las mutaciones que causan el fenotipo stay green también tienen efectos pleiotrópicos sobre el rendimiento en semillas en condiciones naturales. En estas condiciones el rendimiento fue menor en GGd1d1d2d2 que en el genotipo silvestre. Experimentos previos mostraron que el rendimiento de plantas cultivadas en cámaras de crecimiento era mayor en GGd1d1d2d2, debido probablemente a que el mutante prolonga su actividad fotosintética porque mantiene la integridad del cloroplasto. La actividad fotosintética no resulta prolongada en GGd1d1d2d2 en condiciones naturales, probablemente debido a que el mutante experimenta estrés hídrico en condiciones naturales aún con adecuada disponibilidad hídrica. Esto no sucede en cámaras de crecimiento donde las condiciones de humedad, temperatura e irradiancia son menos extremas que a la intemperie durante la estación normal de crecimiento de la soja. El resultado mas importante hallado en esta tesis es que la combinación de genes que causan el fenotipo stay green en soja provocan también una mayor sensibilidad a la sequía. Esta vinculación entre la senescencia y la tolerancia a la sequía no ha sido encontrada en otros mutantes stay green. Los datos obtenidos sugieren que los genes d1 y d2 se encuentran en un punto de una cadena de transducción de señales donde convergen la senescencia foliar y algunas respuestas al estrés hídrico. En esta tesis se realizó una extensa caracterización fisiológica del comportamiento del mutante GGd1d1d2d2 ante la sequía. Queda pendiente determinar cuáles genes de resistencia a la sequía son controlados por G, d1 y d2 como un primer paso del camino que conduzca a dilucidar la interrelación genética entre la senescencia foliar y las respuestas de las plantas al estrés hídrico.Doctor en Ciencias NaturalesUniversidad Nacional de La PlataFacultad de Ciencias Naturales y Muse

    La senescencia foliar como factor de resistencia a la sequía en la soja (Glycine max L. Merr.)

    Get PDF
    El objetivo general de esta tesis fue determinar el papel de la senescencia foliar en la tolerancia de las plantas superiores al déficit hídrico. La aproximación experimental consistió en comparar la respuesta a la sequía de líneas casi isogénicas de soja que senescen normalmente (genotipo silvestre, ggD1D1D2D2) o con mutaciones que provocan un fenotipo stay green (genotipo GGd1d1d2d2). La combinación al estado homocigota de los genes G (dominante) y d1 y d2 (recesivos) provoca la inhibición de un amplio espectro del síndrome de senescencia foliar, manteniendo la integridad del cloroplasto cuando en el genotipo silvestre se han degradado la mayor parte de los componentes del estroma y la membrana tilacoidal. Sin embargo, se comprobó que la combinación al estado homocigota recesivo de los genes d1 y d2 también provoca una mayor sensibilidad a la sequía. Ante una situación de estrés hídrico, las hojas del mutante d1d1d2d2 (con o sin G) experimentan una deshidratación irreversible a niveles de estrés mucho menores que los necesarios para causar el mismo fenómeno en el genotipo silvestre. La deshidratación comienza en los bordes de la hoja y luego se extiende hacia el resto de la lámina, primero en las hojas basales y luego progresa hacia las apicales. La deshidratación de las hojas de GGd1d1d2d2 ocurre tanto en plántulas como en plantas al estado reproductivo sometidas a sequía. Un fenómeno similar se observa en plantas con adecuado suministro hídrico al final del ciclo vital. En el genotipo silvestre, en cambio, las hojas abscinden al final del ciclo con un alto grado de hidratura. Se efectuaron varios experimentos con el objetivo de caracterizar cuantitativamente la respuesta a la sequía del genotipo silvestre (cv. Clark) y del mutante stay green GGd1d1d2d2, a través de la medición de indicadores del estado hídrico de las hojas. El contenido relativo de agua (CRA) y el potencial agua de las hojas del mutante sometidas a un período de estrés hídrico declinaron mas rápidamente que en el genotipo silvestre. Sin embargo, la conductancia estomática disminuyó en forma semejante en las plantas de GGd1d1d2d2 y del genotipo silvestre. Tampoco hubo diferencias en el potencial soluto en el estado de hidratación máxima de hojas de plántulas de Clark y GGd1d1d2d2 sometidas previamente a sequía. Estas observaciones indican que la mayor sensibilidad a la sequía en GGd1d1d2d2 no se debe a diferencias en la capacidad para el ajuste osmótico o cierre estomático. La deshidratación de las hojas del mutante podría explicarse por una obstrucción permanente del xilema que impidiera el flujo de agua durante la sequía y luego de reasumidas las condiciones de adecuado suministro hídrico. Para probar esta hipótesis, se realizaron experimentos donde se midieron el CRA, el contenido porcentual de agua y el potencial agua de plántulas de Clark y GGd1d1d2d2 sometidas a sequía y luego rehidratadas. En estos experimentos se encontró que los indicadores del estado hídrico se recuperan en pocas horas a niveles semejantes en las hojas de Clark y en las de GGd1d1d2d2 que se han deshidratado parcialmente. De estos experimentos se puede deducir que la deshidratación de las hojas de GGd1d1d2d2 no se debe a que una obstrucción permanente del xilema impida el flujo de agua. La aplicación exógena de ácido abscísico causó una marcada reducción de la conductancia estomática tanto en el genotipo silvestre como en GGd1d1d2d2. Sin embargo, la aplicación exógena de ácido abscísico no evita la deshidratación de las hojas de GGd1d1d2d2, ni revierte el fenotipo stay green del mutante. De estos experimentos se puede concluir que la mayor sensibilidad de GGd1d1d2d2 a la sequía probablemente no está relacionada con alteraciones en la percepción, sensibilidad o biosíntesis del ácido abscísico. Dado que no se encontraron diferencias en la respuesta de la conductancia estomática de Clark y GGd1d1d2d2 frente al estrés hídrico, se examinó la pérdida de agua del mutante a través de la cutícula, midiendo la pérdida de agua de hojas mantenidas en la oscuridad y a elevada concentración de CO2, situación en la cual los estomas están cerrados. Debido a que las hojas de soja son anfiestomáticas y es imposible descartar totalmente la pérdida de agua a través de los estomas, la pérdida de agua en oscuridad y a alta concentración de CO2 se menciona aquí como transpiración superficial mínima en lugar de transpiración cuticular, reservando este último término para las superficies foliares desprovistas de estomas. La transpiración superficial mínima (Tsm) disminuyó durante la sequía en las plantas del genotipo silvestre. En GGd1d1d2d2 la disminución de la Tsm durante el tratamiento de estrés fue mucho menor. Es posible que la mayor Tsm en GGd1d1d2d2 sea debida a alteraciones en la deposición de ceras epicuticulares. Pero observaciones con el microscopio electrónico de barrido no mostraron diferencias en la morfología de las ceras epicuticulares entre el mutante y el genotipo silvestre. Para comprobar cuál (o cuales) de las mutaciones que causan el fenotipo stay green determinan la mayor sensibilidad a la sequía del mutante, se realizaron experimentos utilizando líneas casi isogénicas con diferentes combinaciones de los genes G, d1 y d2. Las plantas de todas las isolíneas fueron sometidas a sequía y se midió su contenido relativo de agua. Se encontró que las isolíneas que portaban los genes d1 y d2 al estado homocigota recesivo, al ser sometidas a estrés hídrico, experimentan la deshidratación irreversible de sus hojas. De estos experimentos se puede concluir que los genes causantes de la mayor sensibilidad a la sequía del mutante son d1 y d2 combinados. Además de los efectos sobre la tolerancia al estrés, las mutaciones que causan el fenotipo stay green también tienen efectos pleiotrópicos sobre el rendimiento en semillas en condiciones naturales. En estas condiciones el rendimiento fue menor en GGd1d1d2d2 que en el genotipo silvestre. Experimentos previos mostraron que el rendimiento de plantas cultivadas en cámaras de crecimiento era mayor en GGd1d1d2d2, debido probablemente a que el mutante prolonga su actividad fotosintética porque mantiene la integridad del cloroplasto. La actividad fotosintética no resulta prolongada en GGd1d1d2d2 en condiciones naturales, probablemente debido a que el mutante experimenta estrés hídrico en condiciones naturales aún con adecuada disponibilidad hídrica. Esto no sucede en cámaras de crecimiento donde las condiciones de humedad, temperatura e irradiancia son menos extremas que a la intemperie durante la estación normal de crecimiento de la soja. El resultado mas importante hallado en esta tesis es que la combinación de genes que causan el fenotipo stay green en soja provocan también una mayor sensibilidad a la sequía. Esta vinculación entre la senescencia y la tolerancia a la sequía no ha sido encontrada en otros mutantes stay green. Los datos obtenidos sugieren que los genes d1 y d2 se encuentran en un punto de una cadena de transducción de señales donde convergen la senescencia foliar y algunas respuestas al estrés hídrico. En esta tesis se realizó una extensa caracterización fisiológica del comportamiento del mutante GGd1d1d2d2 ante la sequía. Queda pendiente determinar cuáles genes de resistencia a la sequía son controlados por G, d1 y d2 como un primer paso del camino que conduzca a dilucidar la interrelación genética entre la senescencia foliar y las respuestas de las plantas al estrés hídrico.Facultad de Ciencias Naturales y Muse

    The stay green mutations d1 and d2 increase water stress susceptibility in soybeans

    Get PDF
    The stay green mutant genotype d1d1d2d2 inhibits the breakdown of chloroplast components in senescing leaves of soybean (Glycine max L. Merr.). Together with G (a gene that preserves chlorophyll in the seed coat) they may extend photosynthetic activity in some conditions. While wild-type soybeans maintain high leaf water potentials right up to abscission, leaves of (GG)d1d1d2d2 dehydrate late in senescence, which suggests that water relations may be altered in the mutant. Three-week-old plants were subjected to a moderate water deficit (soil water potential=-0.7 MPa) for 7-10 d. Leaf water potential and relative water content decreased significantly more in response to water deficit in unifoliate leaves of GGd1d1d2d2 than in a near-isogenic wild-type line. Down-regulation of stomatal conductance in response to drought was similar in mutant and wild-type leaves. Likewise, exogenously applied ABA reduced stomatal conductance to a similar extent in the mutant and the wild type, and applied ABA failed to restore water deficit tolerance in GGd1d1d2d2. Experiments with explants lacking roots indicate that the accelerated dehydration of GGd1d1d2d2 is probably not due to alterations in the roots. In a comparison of near-isogenic lines carrying different combinations of d1, d2 and G, only d1d1d2d2 and GGd1d1d2d2 (i.e. the genotypes that cause the stay green phenotype) were more susceptible to water deficit than the wild type. These data suggest that pathways involved in chloroplast disassembly and in the regulation of stress responses may be intertwined and controlled by the same factors.Instituto de Fisiología Vegeta

    The stay green mutations d1 and d2 increase water stress susceptibility in soybeans

    Get PDF
    The stay green mutant genotype d1d1d2d2 inhibits the breakdown of chloroplast components in senescing leaves of soybean (Glycine max L. Merr.). Together with G (a gene that preserves chlorophyll in the seed coat) they may extend photosynthetic activity in some conditions. While wild-type soybeans maintain high leaf water potentials right up to abscission, leaves of (GG)d1d1d2d2 dehydrate late in senescence, which suggests that water relations may be altered in the mutant. Three-week-old plants were subjected to a moderate water deficit (soil water potential=-0.7 MPa) for 7-10 d. Leaf water potential and relative water content decreased significantly more in response to water deficit in unifoliate leaves of GGd1d1d2d2 than in a near-isogenic wild-type line. Down-regulation of stomatal conductance in response to drought was similar in mutant and wild-type leaves. Likewise, exogenously applied ABA reduced stomatal conductance to a similar extent in the mutant and the wild type, and applied ABA failed to restore water deficit tolerance in GGd1d1d2d2. Experiments with explants lacking roots indicate that the accelerated dehydration of GGd1d1d2d2 is probably not due to alterations in the roots. In a comparison of near-isogenic lines carrying different combinations of d1, d2 and G, only d1d1d2d2 and GGd1d1d2d2 (i.e. the genotypes that cause the stay green phenotype) were more susceptible to water deficit than the wild type. These data suggest that pathways involved in chloroplast disassembly and in the regulation of stress responses may be intertwined and controlled by the same factors.Instituto de Fisiología Vegeta

    Leaf traits related to productivity in Populus deltoides during the post-flooding period

    Get PDF
    Flooding stress induces changes in trees at plant and leaf level that can reduce growth and productivity. In this work, we explored changes in leaf traits related to productivity during the post-flooding period in three poplar clones with different degrees of flooding sensibility. Our hypothesis was that changes in leaf traits could lead to a higher photosynthetic activity in the post-flooding period to compensate for the reduction in carbon fixation under flooding. Plants were grown in pots in a greenhouse. Flooding was induced by filling the pots with tap water up to 5 cm over the surface soil for 28 days. After this period, flooding ended and plant recovery was followed for 44 days. Flooding decreased total leaf area, stomatal conductance and photosynthetic rate, but leaf size, stomatal, leaf area, chlorophyll and Rubisco content were not affected. Stomatal index was reduced in one clone and leaf thickness was increased in another one. During the post-flooding period, the formerly flooded plants of all clones produced leaves with increased area and thickness compared to the control plants, but specific leaf area and chlorophyll and Rubisco content were not altered. Stomatal index was only decreased in one clone. The leaves expanded in the postflooding period did not increase their photosynthetic capacity, but had a higher water use efficiency and a lower stomatal conductance. The plants compensated for the reduced growth under flooding by substituting the leaf area loss instead of increasing the photosynthetic activity.Instituto de Fisiología Vegeta

    The stay green mutations d1 and d2 increase water stress susceptibility in soybeans

    Get PDF
    The stay green mutant genotype d1d1d2d2 inhibits the breakdown of chloroplast components in senescing leaves of soybean (Glycine max L. Merr.). Together with G (a gene that preserves chlorophyll in the seed coat) they may extend photosynthetic activity in some conditions. While wild-type soybeans maintain high leaf water potentials right up to abscission, leaves of (GG)d1d1d2d2 dehydrate late in senescence, which suggests that water relations may be altered in the mutant. Three-week-old plants were subjected to a moderate water deficit (soil water potential=-0.7 MPa) for 7-10 d. Leaf water potential and relative water content decreased significantly more in response to water deficit in unifoliate leaves of GGd1d1d2d2 than in a near-isogenic wild-type line. Down-regulation of stomatal conductance in response to drought was similar in mutant and wild-type leaves. Likewise, exogenously applied ABA reduced stomatal conductance to a similar extent in the mutant and the wild type, and applied ABA failed to restore water deficit tolerance in GGd1d1d2d2. Experiments with explants lacking roots indicate that the accelerated dehydration of GGd1d1d2d2 is probably not due to alterations in the roots. In a comparison of near-isogenic lines carrying different combinations of d1, d2 and G, only d1d1d2d2 and GGd1d1d2d2 (i.e. the genotypes that cause the stay green phenotype) were more susceptible to water deficit than the wild type. These data suggest that pathways involved in chloroplast disassembly and in the regulation of stress responses may be intertwined and controlled by the same factors.Instituto de Fisiología Vegeta

    Variability in flooding tolerance, growth and leaf traits in a <i>Populus deltoides</i> intraspecific progeny

    Get PDF
    Climate change will increase the risk of flooding in several areas of the world where Populus deltoides (eastern cottonwood) is planted, so it would be desirable for this species to select for flooding tolerance. The aims of this work were to explore the variability in growth, leaf traits and flooding tolerance in an F1 full-sib intraspecific progeny of Populus deltoides, to analyze the correlations of leaf and growth traits with flooding tolerance, and to assess their suitability for use in breeding programs. Two-month-old parental clones and their progeny of 30 full-sib F1 genotypes were grown in pots and subjected to two treatments: 1) plants watered to field capacity (control); and 2) plants flooded up to 10 cm above soil level for 35 days. Growth (height, diameter and biomass partition) and leaf traits (leaf size and number, specific leaf area, leaf senescence, abscission, stomatal conductance, carbon isotope discrimination, stomatal index) were measured. Flooding tolerance for each genotype was estimated as the ratio of the biomass of stressed plants to the biomass of control plants. Results showed segregation in terms of flooding tolerance in the F1 progeny. A significant genotype effect was found for leaf size and number, carbon isotopic discrimination and stomatal conductance, but it did not correlate with flooding tolerance. Height, diameter and root-to-shoot ratio had a positive phenotypic correlation with flooding tolerance, and there was a positive genetic correlation of height and diameter with biomass on both treatments. The narrow sense heritability values for the traits analyzed ranged from 0 to 0.56. We conclude that growth traits are more adequate than leaf traits for selection to increase flooding tolerance. A vigorous initial growth would increase flooding tolerance in young poplar plants.Instituto de Fisiología Vegeta

    Variability in flooding tolerance, growth and leaf traits in a Populus deltoides intraspecific progeny

    Get PDF
    Climate change will increase the risk of flooding in several areas of the world where Populus deltoides Marshall (eastern cottonwood) is planted, so it would be desirable for this species to select for flooding tolerance. The aims of this work were to explore the variability in growth, leaf traits and flooding tolerance in an F1 full-sib intraspecific progeny of P. deltoides, to analyze the correlations of leaf and growth traits with flooding tolerance and to assess their suitability for use in breeding programs. Two-month-old parental clones and their progeny of 30 full-sib F1 genotypes were grown in pots and subjected to two treatments: (i) plants watered to field capacity (control) and (ii) plants flooded up to 10 cm above soil level for 35 days. Growth (height, diameter and biomass partition) and leaf traits (leaf size and number, specific leaf area, leaf senescence, abscission, stomatal conductance, carbon isotope discrimination, stomatal index) were measured. Flooding tolerance for each genotype was estimated as the ratio of the biomass of stressed plants to the biomass of control plants. Results showed segregation in terms of flooding tolerance in the F1 progeny. A significant genotype effect was found for leaf size and number, carbon isotopic discrimination and stomatal conductance, but it did not correlate with flooding tolerance. Height, diameter and root-to-shoot ratio had a positive phenotypic correlation with flooding tolerance, and there was a positive genetic correlation of height and diameter with biomass on both treatments. The narrow sense heritability values for the traits analyzed ranged from 0 to 0.56. We conclude that growth traits are more adequate than leaf traits for selection to increase flooding tolerance. A vigorous initial growth would increase flooding tolerance in young poplar plants.Fil: Rodríguez, María Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Lauff, Diana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Cortizo, Silvia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Delta del Paraná; ArgentinaFil: Luquez, Virginia Martha Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin

    Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows

    Get PDF
    Willows are widely planted in areas under risk of flooding. The physiological responses of willows to flooding have been characterized, but little is known about their responses during the post-flooding period. After the end of the stress episode, plants may modify some traits to compensate for the biomass loss during flooding. The aim of this work was to analyze the post-flooding physiological responses of willow under two different depths of stagnant floodwater. Cuttings of Salix matsudana NZ692 clone were planted in pots in a greenhouse. The experiment started when the plants were 2 months old with the following treatments: Control plants (watered to field capacity); plants partially flooded 10 cm above soil level (F10) and plants partially flooded 40 cm above soil level (F40). The flooding episode lasted 35 days and was followed by a recovery period of 28 days (post-flooding period). After the flooding period, height, diameter and total biomass were higher in F10, while F40 plants showed an increase in plant adventitious root production and leaf nitrogen content. During the post-flooding period, the photosynthetic rate, nitrogen, chlorophyll and soluble sugar contents were significantly higher in leaves of F40 than in Control and F10 treatments. Stomatal conductance and specific leaf area were higher in the previously flooded plants compared to Control treatment. Plants from F10 treatments showed a higher growth in height, root-to-shoot ratio, and carbon isotope discrimination than F40, while the opposite occurred for growth in diameter, vessel size and leaf area. We conclude that depth of floodwater not only causes different responses during flooding, but that its effects are also present in the post-flooding recovery period, affecting the growth and physiology of willows once the stress episode has ended. Even when flooding impacted growth negatively in F40, in the post-flooding period these plants compensated by increasing the photosynthetic rate, plant leaf area and xylem vessel size. Willows endurance to flooding is the result of both responses during flooding, and plastic responses during post-flooding.Fil: Mozo, Irina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Rodríguez, María Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Monteoliva, Silvia Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Luquez, Virginia Martha Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin

    Flooding tolerance in willows planted in Argentina: current knowledge and perspectives

    Get PDF
    En el Delta del Paraná seencuentra el núcleo principal de plantación de sauces en la Argentina. Una consecuencia prevista por los escenarios de cambio climático es un incremento de la frecuencia de inundaciones para la región. Para que la actividad forestal pueda continuar en esas condiciones, es necesario disponer de genotipos que combinen buena aptitud productiva con una mayor tolerancia al anegamiento.En este trabajo se revisan las principales respuestas morfológicas y fisiológicas a la inundación en sauce,especialmente aquellas que tienen efecto sobre el crecimiento y la productividad. Se discute la utilización de experimentos controlados y observaciones a campo para evaluar la tolerancia a la inundación de distintos genotipos de sauce. Se analiza el uso de nuevos clones de sauce, recientemente liberados por el Instituto Nacional de Tecnología Agropecuaria (INTA), para aumentar la productividad en condiciones de estrés por inundación en el Delta del Paraná y otras zonas de la Argentina. Asimismo, se hace un resumen de las áreas de investigación dónde habría que desarrollar los conocimientos para aumentarla tolerancia a la inundación de los sauces, y reducir el efecto negativo del cambio climático sobre las plantaciones forestales.Most willows plantations in Argentina are located in the Paraná River Delta area. Climate change will increase the frequency of flooding episodes in this region. In order to reduce the negative consequences of climate change on forestry, genotypes combining high productivity with increased tolerance to flooding are needed. In this study, the main morphological and physiological responses of willows to flooding are analyzed, especially those traits that affect growth and productivity. Two kinds of data are discussed and compared: those from controlled experiments with pot-grown plants, and observations of responses of plants growing in the field to natural episodes of flooding. The use of new willows clones developed by the Instituto Nacional de Tecnología Agropecuaria (INTA) to increase willows productivity under flooding in Argentina is discussed. The fields of knowledge where more research is needed are summarized.Fil: Luquez, Virginia Martha Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Cerrillo Teresa. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Delta del Paraná; ArgentinaFil: Rodríguez María Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin
    corecore