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Abstract  19 

Flooding stress induces changes in trees at plant and leaf level that can reduce growth and 20 

productivity. In this work, we explored changes in leaf traits related to productivity during the post-21 

flooding period in three poplar clones with different degrees of flooding sensibility. Our hypothesis was 22 

that changes in leaf traits could lead to a higher photosynthetic activity in the post-flooding period to 23 

compensate for the reduction in carbon fixation under flooding. 24 

Plants were grown in pots in a greenhouse. Flooding was induced by filling the pots with tap 25 

water up to 5 cm over the surface soil for 28 days. After this period, flooding ended and plant recovery 26 

was followed for 42 days. 27 

Flooding caused changes at plant and leaf level, not only during flooding but also after the 28 

stress ended. During this post-flooding period, the formerly flooded plants of all clones produced 29 

leaves with increased area and thickness compared to the control plants, but the photosynthetic rate 30 

was not increased. The plants compensated for the reduced growth under flooding by substituting the 31 

leaf area loss instead of increasing the photosynthetic activity.  32 

 33 

 34 
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Key Message:  38 

After a flooding period, Populus deltoides plants compensate for the reduced growth under flooding by 39 

substituting the leaf area loss instead of increasing the leaf photosynthetic activity.  40 

41 
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Introduction 42 

The tolerance to flooding of woody plants varies according to species and genotypes, the age 43 

of the plant, the degree of covering by water, the flood duration and the conditions of the floodwater 44 

(Kozlowski 1997, Glenz et al. 2006). Among the most conspicuous responses to flooding, we can find 45 

growth reduction, development of hypertrophied lenticels, adventitious roots and aerenchyma 46 

formation; accelerated leaf senescence and abscission; changes in the absorption and availability of 47 

mineral nutrients; and several metabolic changes caused by hypoxic or anoxic conditions (Kozlowski 48 

1997, Bailey-Serres and Voesenek 2008). During root hypoxia, photosynthetic activity can be reduced 49 

by stomatal closure in different poplar clones (Bejaoui et al. 2006, Gong et al. 2007, Guo et al. 2011). 50 

In Populus, several morphological leaf traits are related to productivity: total leaf area (Rae et 51 

al. 2004, Monclus et al. 2005, Marron et al. 2005), number of leaves on the main stem (Rae et al. 52 

2004), individual leaf area (Monclus et al. 2005, Marron et al. 2005), specific leaf area (Marron et al. 53 

2005), and stomatal density (Al Afas et al. 2006). Some of these traits are affected by flooding: in 54 

Populus trichocarpa x deltoides, root hypoxia reduces leaf growth rate and final leaf size through the 55 

reduction of both cell size and cell number (Smit et al. 1989); in Populus angustifolia, flooding reduces 56 

leaf number and size (Rood et al. 2010); and in Populus plants with flooded roots, specific leaf weight 57 

increases (i.e., specific leaf area decreases, Liu and Dickman 1992). 58 

These flood-induced leaf modifications will probably affect plant productivity. Under flooding, 59 

the combination of a reduced rate of leaf expansion and an acceleration of leaf senescence and 60 

abscission can reduce the photosynthetically active leaf area, thus decreasing plant growth (Luquez et 61 

al. 2012). This combined with a reduction in the photosynthesis rate due to stomatal closure results in 62 

a reduced availability of photosynthates for growth. In addition to that, there are changes in dry matter 63 

partitioning and a decrease in the root/shoot ratio (Kozlowski 1997).  64 

In spite of the well-documented changes induced by flooding in leaf morphology and 65 

physiology, little is known about the effects of these modifications in the post-flooding period, although 66 

they are likely to affect growth recovery. These alterations cannot be neglected in a climate change 67 

scenario, where areas with extensive poplar plantations like the Lower Paraná River Delta will 68 

experience flooding events more frequently (Barros et al. 2006). Even when these flooding episodes 69 

do not cause plant death, they may alter plant and leaf traits, with potentially lasting effects on forest 70 

growth and productivity.  71 
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In a previous work, we identified three Populus deltoides clones planted in the Paraná Delta 72 

area with different degrees of growth reduction under flooding. The degree of growth reduction 73 

correlated with the overall reduction in total leaf area, individual leaf size and leaf expansion rate 74 

(Luquez et al. 2012). In the present work, we explored more extensively the changes experienced by 75 

these clones in the post-flooding period. We analyzed the changes induced by flooding in leaf traits 76 

that affect productivity by comparing three cohorts of leaves: the first cohort -L1- expanded before 77 

flooding induction, the second -L2- expanded during flooding, and the third -L3- expanded after the 78 

flooding episode. Our hypothesis was that changes in leaf architecture and biochemistry could lead to 79 

a higher net photosynthetic rate in the post-flooding period to compensate for the reduction in carbon 80 

fixation under flooding. 81 

 82 

 83 

Material and Methods 84 

Plant material, experimental design and stress treatment 85 

The Populus deltoides W. Bartram ex Marshall clones used in this work were Alton, Stoneville 86 

67 (ST67) and 149-82. These clones were selected because they showed different degrees of growth 87 

reduction under flooding in a previous experiment: Alton was tolerant, 149-82 was sensitive, and ST67 88 

was sensitive but to a lesser degree than 149-82 (Luquez et al. 2012).  89 

 Two experiments were carried out. In the 2009 experiment, one-year-old cuttings of 60 cm 90 

long were planted in 7 L pots filled with clay loam soil on August 7, 2009. The pots were placed in a 91 

greenhouse in a completely randomized design, with 10 replicates for each clone and treatment. 92 

Irradiance inside the greenhouse on clear days reached a maximum value of 1282 µmoles m-2 s-1. Bud 93 

flush occurred between August 20 and August 31, 2009. A slow-release commercial fertilizer (NPK 94 

12:5:14 plus Mg, S, Ca, Zn, Fe, Mo and B) was added to the pots to ensure an adequate nutrient 95 

availability. The dose was 1 g of fertilizer per pot, and the fertilization treatment was repeated twice 96 

before the beginning of the flooding treatment. To avoid fungal diseases, the trees were treated once 97 

a week with two commercial fungicides (Benomyl 50% WP and Carbendazim 50% SC). Before the 98 

treatment, trees were pruned and only one shoot was kept, in order to minimize the variability induced 99 

by several shoots per tree. Flooding started when the shoots were 2 months old, and was induced by 100 

placing the potted trees inside a sealed 10 L pot filled with tap water up to approximately 5 cm above 101 
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soil level; water was added when necessary to keep this level. The control plants were watered 102 

regularly to field capacity. The flooding stress treatment started on October 28, 2009 and lasted for 35 103 

days. 104 

 In the 2011-2012 experiment, one-year-old cuttings of 20 cm long were planted in 4.5 L pots 105 

filled with a 1:1 soil-sand mix. The plants were treated as described above, except for fertilization. Pots 106 

were watered weekly with 50 ml of complete Hoagland solution (Legget and Frere 1971). Flooding 107 

was induced as described above, by placing the potted trees inside a sealed 6 L pot. The flooding 108 

stress treatment started on November 2, 2011 and lasted for 28 days. After that, the formerly flooded 109 

plants were removed from the sealed pots, water was allowed to drain, and the plants were measured 110 

for 44 days. 111 

  In the 2011-2012 experiment, three leaves were tagged in each plant, as described in Luquez 112 

et al. (2012): one leaf expanded before flooding (L1), one leaf expanded during the period of flooding 113 

(L2) and one leaf expanded after flooding ended (L3). Morphological, physiological and biochemical 114 

measurements were carried out on these leaves (see below). Unless otherwise stated, all data 115 

presented were measured in the 2011-2012 experiment. 116 

 117 

Growth measurements and microscopic observations 118 

Total shoot height was measured with a graduated stick. At the end of the experiment, all 119 

leaves were scanned and the total leaf area (TLA) was determined with the Image J software 120 

(http://rsbweb.nih.gov/ij/, Schneider et al. 2012). The individual leaf area (ILA) of leaves L1, L2 and L3 121 

were determined in the same way. Dry mass was determined after drying leaves, shoots and roots at 122 

65°C to constant weight. Specific leaf area (SLA, cm2 g-1) was determined by taking a leaf disc of 123 

known area (2.27 cm2) from each cohort and drying them to constant weight as described above. The 124 

Relative Growth Rate (RGR) for stem height growth was calculated according to Whitehead and 125 

Myerscough (1962). 126 

 Imprints were taken from the abaxial surface of leaves L1, L2 and L3 using clear lacquer and 127 

transparent tape. The imprints were fixed on glass slides, observed at 20x and photographed with a 128 

digital camera (Olympus Evolt E-330). Four pictures were taken for each imprint, each representing 129 

one observation field. The number of stomata per field (stomatal density) and the total number of 130 

epidermal cells per field (epidermal cell density) were counted using the Image J software 131 

http://rsbweb.nih.gov/ij/
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(http://rsbweb.nih.gov/ij/, Schneider et al. 2012), and the stomatal index (SI) was calculated according 132 

to Masle et al. (2005): 133 

 134 

  SI= (100 x stomatal density) / (stomatal density + epidermal cell density) 135 

 136 

 To determine leaf thickness, a piece of leaf around the main vein of leaves L1, L2 and L3 was 137 

fixed in FAA (formalin-alcohol-acetic acid). The leaves were cut by hand with a razor blade; seven 138 

cuttings were made of each sample. The cuttings were observed at 10x and photographed with a 139 

digital camera (Olympus Evolt E-330) and three measurements of thickness were performed on each 140 

side of the vein every 0.05 mm. Leaf thickness was calculated as an average of the six measurements 141 

made in all seven cuttings. 142 

 143 

Gas exchange measurements 144 

Photosynthetic activity (A), transpiration and stomatal conductance (gs) were measured with 145 

an IRGA CIRAS II, PP Systems in the experiment on the latest fully expanded leaf. Water Use 146 

Efficiency (WUE) was measured as the ratio between A and transpiration. The measurements were 147 

carried out between 10:00 am and 3:00 pm, under an irradiance of 1500 µmoles m-2 s-1.  148 

 149 

Chlorophyll and Rubisco content 150 

 One 5-mm-diameter leaf disc (chlorophyll) and two 10-mm-diameter leaf discs (Rubisco) were 151 

frozen in liquid nitrogen and stored at -80 °C until the determinations were carried out.  152 

 Chlorophyll content was determined using N,N-Dimethylformamide according to the method of 153 

Inskeep and Bloom (1985).  154 

Rubisco content was determined by SDS-PAGE according to Laemmli (1970). Two 1-cm-155 

diameter leaf discs were homogenized in 1X sample buffer (62.5mM Tris pH 6.8; 5% w/v SDS, 5% v/v 156 

glycerol, 5% v/v β-mercaptoethanol) and centrifuged at 10,000 rpm for 8 min at 4 ºC. For SDS-PAGE 157 

analysis, proteins in the supernatant were separated in 1.5 mm thick minigels with 12% of acrylamide 158 

concentration as in Laemmli (1970). A volume equivalent to 2.62 mm2 of leaf area was loaded in each 159 

lane. Proteins were visualized by staining with Coomassie Brilliant Blue R-250. Gels were digitized 160 

and analyzed for background subtraction and banding density using the Image J software 161 

http://rsbweb.nih.gov/ij/
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(http://rsbweb.nih.gov/ij/). Three or four replicates per treatment were analyzed. The amount of 162 

Rubisco large Sub-unit (LSU) was calculated as a percentage of the initial content.  163 

 164 

Statistical Analysis 165 

The statistical analysis was carried out with R software version 2.8.1 (R Development Core 166 

Team, 2010). ANOVA and mean test were carried out using the agricolae R package.  167 

 168 

 169 

Results 170 

 Dry matter partitioning was measured in the 2009 experiment (Fig. 1). Total dry weight was 171 

significantly reduced only in 149-82, but flooding altered dry matter partitioning in all clones. Root 172 

biomass was reduced in all clones and root/shoot ratio decreased in flooded plants compared to 173 

controls (Fig. 1, in italics). However, the loss of root biomass in Alton was lower than in the other 174 

clones. Its root biomass under flooding was reduced by 25% compared to control plants, while the 175 

reduction in the other clones was of 52% (ST67) and 66% (149-82). Consequently, the root/shoot ratio 176 

decreased by 35% in Alton flooded plants compared to controls, whereas it decreased by 50% in the 177 

other clones.  178 

 The periodical growth in height was similar in both experiments; therefore, only data from 2011 179 

are presented. During the first two weeks of flooding, there were no differences in height between 180 

control and flooded plants, but marked differences began to appear among clones after three weeks 181 

(Fig. 2). Flooding did not reduce height in Alton, with no differences in RGR between both treatments 182 

(Fig.2, left hand side of the arrow).  Flooded plants of 149-82 and ST67 (Fig. 2) reduced their height 183 

after the third week of flooding, but RGR was only significantly reduced in 149-82 (Fig.2, left hand side 184 

of the arrow). After four weeks, the flooding episode was ended and the plants were allowed to 185 

recover and measured for another 42 days. At the end of the recovery period, there were no 186 

differences in height between formerly flooded and non-flooded plants in Alton and ST67, while the 187 

levels of formerly flooded plants in 149-82 were still significantly lower than those of non-flooded 188 

plants. The RGR in the post-flooding period was significantly higher in formerly flooded plants of Alton 189 

and ST67, but not in 149-82 (Fig.4 right hand side). 190 
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Total leaf area (TLA) was measured discriminating the area developed in the post-flooding 191 

period from the area previously expanded (before/during flooding) (Fig. 3). After the 42-day-period of 192 

recovery, there were no significant differences in TLA between control and formerly flooded plants for 193 

any of the clones, but the relative number of leaves expanded before/during and after flooding was 194 

different (data not shown). There were no significant differences in leaf area expanded before/during 195 

flooding between control and flooded Alton, but it was significantly smaller in formerly flooded plants of 196 

149-82 and ST67. The expanded area after the flooding period was significantly larger in formerly 197 

flooded plants than in the control treatment in all clones. 198 

A and gs were measured throughout the flooding and the recovery periods (Fig. 4). Both 199 

variables were reduced by flooding in all clones, but the reduction was less marked in Alton. After the 200 

end of the stress, gs of formerly flooded plants recovered to similar values as control plants. There 201 

was a significant correlation between gs and A in control and flooded plants, but the relation was 202 

weaker in the post-flooding period, remaining significant only in ST67. 203 

 A, gs and WUE were measured in leaves L1, L2 and L3 when they reached their full 204 

expansion (Table 2); in the case of L2 and L3 it happened after the end of flooding. In the cohort 205 

expanded during flooding (L2), A did not differ between treatments. gs was significantly higher only in 206 

149-82 flooded plants, while WUE decreased in all clones but only significantly in Alton. In the cohort 207 

expanded in the post-flooding period (L3), there were no differences in A, gs or WUE.  208 

We determined ILA, SI, SLA and leaf thickness on the three cohorts, L1, L2 and L3 (Table 1).  209 

On leaf L2, ILA and SLA were not significantly affected by flooding in any of the clones. Flooding 210 

reduced SI in ST67 and increased leaf thickness in 149-82. In the cohort expanded during the post-211 

flooding period (L3, Table 1), LAI increased in all clones, albeit not significantly in 149-82. There was 212 

no change in SLA, but leaf thickness increased significantly in all clones. SI decreased only in ST67. 213 

 We measured the chlorophyll and Rubisco content in all three cohorts of leaves (Table 3). We 214 

did not find significant differences between flooded and control plants in any of the clones.  215 

 216 

 217 

Discussion 218 
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In Populus and other species, flooding causes the root system to die back, and the most 219 

tolerant genotypes develop new adventitious roots with aerenchyma (Kozlowski 1997, Cao and 220 

Conner 1999). Our results confirm this, since the genotype with more tolerance -i.e., less growth 221 

reduction under flooding- was Alton, which had a greater root biomass, newly developed roots with 222 

aerenchyma, and a root/shoot ratio less affected by flooding. The most sensitive clone, 149-82, 223 

developed neither hypertrophied lenticels nor adventitious roots (see additional figure 1). The variation 224 

in root biomass seems to be related to the growth recovery capability after flooding. The extensive root 225 

loss in 149-82 is the likely cause for the slow growth recovery in the post-flooding period. More roots 226 

imply a higher capability for water transport and nutrient absorption, allowing for the maintenance of a 227 

larger leaf area during flooding. In poplar, total leaf area often correlates with biomass accumulation 228 

(Rae et al. 2004, Monclus et al. 2005, Marron et al. 2005). In our experiment, 42 days after the end of 229 

the stress episode, TLA was not significantly different between control and formerly flooded plants. 230 

However, when discriminating between the areas developed before/during the flooding and post-231 

flooding periods, a clear difference emerged. The formerly flooded plants developed a greater leaf 232 

area than the controls during the recovery period, thus compensating for the area loss under flooding 233 

due to an increased abscission. There was no difference in the number of leaves expanded after the 234 

end of the flooding stress period (data not shown); hence, the difference is due to the increase in the 235 

area of leaves expanded in the post-flooding period.  236 

Growth rate depends ultimately on the carbon fixing capacity, and this can be reduced by 237 

flooding stress (Bejaoui et al. 2006, Gong et al. 2007, Guo et al. 2011). We found a significant 238 

correlation between gs and A during flooding, suggesting that the main cause for carbon fixation 239 

reduction is stomatal closure. But the correlation is weaker in the post-flooding period, suggesting that 240 

other factors could have an influence on A. Several leaf traits that correlate with biomass accumulation 241 

in poplar (Rae et al. 2004, Monclus et al. 2005, Marron et al. 2005) can be altered by different 242 

environmental factors and stresses, like root hypoxia (Smit et al. 1989) and increased CO2 243 

concentration (Ceulemans et al. 1995). There are also differences among genotypes, leaf side and 244 

leaf position in the canopy (Al Afas et al 2006, Dillen et al. 2008). It has been shown that a higher 245 

stomatal density can enhance photosynthetic capacity in Arabidopsis (Tanaka et al. 2013). These 246 

morphological and biochemical alterations of leaves could increase photosynthetic activity in the post-247 

flooding period, thus compensating for the reduction of leaf carbon fixation under flooding due to leaf 248 
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area reduction and stomatal closure. To answer this question, we measured several leaf traits related 249 

to productivity in cohorts of leaves expanded before, during and after the flooding period (L1, L2 and 250 

L3, respectively), and measured gas exchange when these leaves reached their full expansion. The 251 

gas exchange measurements in L2 and L3 were taken after the end of the flooding period, when gs 252 

reached similar values as those of control plants. Consequently, any differences in photosynthetic 253 

activity will be caused by alterations in the leaf architecture induced by flooding but not by a reduction 254 

of gs. 255 

The area of leaf L2 decreased but not to the same extent as in our previous work (Luquez et 256 

al. 2012). The cause of this difference may lie on the length of the flooding period, which was shorter 257 

than in the previous experiment. Regarding SLA, there were differences only at clonal level but not 258 

between treatments. In those experiments with longer flooding periods, we found a reduction in SLA 259 

on these same clones (data not shown), as reported by Liu and Dickman (1992) for hybrid poplar. As 260 

for ILA, it is likely that the length of the flooding period influenced SLA, as it does to other plant 261 

responses to this stress (Kozlowski 1997, Glenz et al. 2006). The lack of a clear trend of change in the 262 

morphological data, mirrored what happened with gas exchange, Rubisco and chlorophyll data for L2, 263 

i.e., it did not show any differences caused by flooding.  264 

The leaf expanded in the post-flooding period (L3) showed clear trends regarding leaf area 265 

and thickness, since both increased in the formerly flooded plants. SLA did not change, possibly 266 

because both area and width increased at the same time. SLA modulates maximum photosynthetic 267 

rate (Amax) and nitrogen use efficiency on leaves of an ample range of species: leaves with higher SLA 268 

have a higher Amax per unit leaf N (Reich et al. 1998). Our results seems to fit in this broader pattern, 269 

since the lack of change in SLA was accompanied with no change in the photosynthetic rate or the 270 

fraction of leaf N involved directly in the photosynthesis, represented by Rubisco and chlorophyll 271 

content. P. deltoides plants growing under different combinations of water and nitrogen availability, 272 

shows moderate plasticity in leaf traits (Funk et al. 2007) and this seems to be the case in our results 273 

as well. There were changes in leaf thickness and ILA, but most of the leaf traits did not change. 274 

Contrary to our hypothesis, there was no compensatory increase of the photosynthetic rate in 275 

the post-flooding period. It seems that Populus deltoides plants increase their growth rate after 276 

flooding by an increase in leaf area rather than by a higher photosynthetic capacity. 277 

 278 
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Table 1 - Individual Leaf Area (ILA, cm2), Stomatal Index (SI), Specific Leaf Area (SLA, cm2 g-1) and 388 

Leaf Thickness (µm) in three cohorts of poplar leaves. The first cohort (L1) completed its expansion 389 

before flooding induction, the second cohort (L2) expanded during the period of flooding, and the third 390 

cohort (L3) expanded after the end of the stress treatment. Means followed by the same letter do not 391 

differ significantly (p<0.05 LSD). C: control, F: flooded.  392 

 393 

 394 
Treatment Cohort ILA SI SLA Thickness 

Alton C L1 66.3 a 8.2 a 175 b 265 a 

149-82 C L1 89.3 b 9.0 b 181 b 221 b 

ST67 C L1 68.2 a 8.8 ab 222 a 221 b 

      

Alton C L2 102.3 a 8.8 a 95 b 309 b 

Alton F L2 98.1 a 9.0 a 94 b 315 b 

149-82 C L2 106.8 a 8.5 a 112 a 278 a 

149-82 F L2 98.5 a 8.9 a 106 a 295 c 

ST67 C L2 95.1 a 10.1 b 114 a 272 a 

ST67 F L2 103.1 a 8.8 a 113 a 278 a 

      

Alton C L3 78.9 c 7.7 a 99 b 310 d 

Alton F L3 112.5 ab 8.3 ab 107 ab 323 b 

149-82 C L3 102.8 ab 8.1 ab 110 ab 297 a 

149-82 F L3 116.2 a 7.7 a 114 a 326 b 

ST67 C L3 87.9 c 10.1 c 117 a 277 a 

ST67 F L3 127.6 b 8.9 b 118 a 289 c 

 395 
 396 
 397 
 398 

399 
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Table 2 – Net Photosynthesis (A, µmoles CO2 m-2 s-1), Stomatal Conductance (gs, mmoles H2O m-2 s-400 
1) and instantaneous Water Use Efficiency (WUE) in three cohorts of poplar leaves. The first cohort 401 

(L1) completed its expansion before flooding induction, the second cohort (L2) expanded during the 402 

period of flooding, and the third cohort (L3) expanded after the end of the stress treatment. Means 403 

followed by the same letter do not differ significantly (p<0.05 LSD). C: control, F: flooded.  404 

 405 

 406 
Clone / 

Treatment 

Leaf 

Cohort 

 

A 

 

gs 

 

WUE 

Alton C L1 17.3 a 322 a 3.78 a 

149-82 C L1 14.2 a 311 a 2.93 b 

ST67 C L1 16.4 a 262 a 3.93 ab 

     

Alton C L2 12.6 ab 144 ab 3.12 ab 

Alton F L2 14.2 b 196 b 2.65 bc 

149-82 C L2 11.2 a 123 a 2.74 ab 

149-82 F L2 10.7 a 191 b 2.16 c 

ST67 C L2 12.3 ab 116 a 3.20 a 

ST67 F L2 12.2 ab 157 ab 2.96 ab 

     

Alton C L3 15.0 a 98 b 6.85 a 

Alton F L3 13.7 a 89 ab 5.07 a 

149-82 C L3 16.3 a 94 ab 6.52 a 

149-82 F L3 13.1 a 77 ab 5.27 a 

ST67 C L3 14.4 a 71 a 6.15 a 

ST67 F L3 13.6 a 81 ab 5.43 a 

 407 
 408 
 409 
 410 

 411 
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Table 3 - Chlorophyll (Chl, µg cm-2) and Rubisco content (as percentage of the initial content) in three 412 

cohorts of poplar leaves. The first cohort (L1) completed its expansion before flooding induction, the 413 

second cohort (L2) expanded during the period of flooding, and the third cohort (L3) expanded after 414 

the end of the stress treatment. Means followed by the same letter do not differ significantly (p<0.05 415 

LSD). C: control, F: flooded. 416 

 417 

 418 
Clone / 

Treatment 

Leaf 

Cohort 

Chl a Chl b Total Chl Rubisco 

LSU 

Alton C L1 31.6 a 11.6 a 44.5 a 100 

149-82 C L1 29.7 a 11.6 a 41.3 a 100 

ST67 C L1 32.5 a 33.4 a 44.5 a 100 

      

Alton C L2 25.2 ab 10.1 ab 35.2 ab 73 a 

Alton F L2 26.5 a 10.3 a 36.8 a 82 a 

149-82 C L2 24.8 ab 9.9 ab 34.8 ab 88 a 

149-82 F L2 26.6 a 10.4 a 37.0 a 91 a 

ST67 C L2 23.5 bc 9.9 ab 33.3 bc 72 a 

ST67 F L2 21.4 c 9.4 b 30.8 c 66 a 

      

Alton C L3 27.1 ab 10.8 ab 37.9 ab 82 a 

Alton F L3 27.1 ab 10.9 ab 38.0 ab 76 a 

149-82 C L3 28.7 bc 11.2 bc 39.4 bc 100 a   

149-82 F L3 30.2 c 11.8 c 42.0 c 108 a 

ST67 C L3 25.0 a 10.3 a 35.3 a 85 a 

ST67 F L3 27.4 ab 11.3 bc 38.7 abc 87 a 

 419 
 420 
 421 

422 
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Legends to the figures 423 

Fig. 1 – Dry matter partitioning between roots, stem and leaves in three Populus deltoides clones -424 

Alton, 149-82 and ST67-, in the 2009 experiment. The root system of the plants was flooded (F) for 35 425 

days, while the control plants (C) were maintained under well-drained conditions. Means with the 426 

same letter do not differ significantly (p<0.05 LSD) for total dry matter. In italics: root/shoot ratio for 427 

each treatment and clone (shoot = stem + leaves).  428 

 429 

Fig. 2 – Growth in height of three Populus deltoides clones: Alton, 149-82 and ST67. The treatments 430 

were control (well-drained, black circles) and flooded (white circles). The arrows indicate the end of 431 

the flooding treatment. The asterisks indicate statistically significant differences between control and 432 

flooded plants of the same clone. Relative Growth Rate (RGR) values are multiplied by 103. c: control, 433 

f: flooding; pf: plants previously flooded. 434 

 435 

Fig.3 - Total leaf area and area expanded after the end of flooding of three Populus deltoides clones: 436 

Alton, 149-82 and ST67. The treatments were control (C) and flooded (F). In the 2011 experiment and 437 

after 28 days of flooding, the plants were allowed to drain and their recovery was followed for 42 days. 438 

Means with the same letter do not differ significantly (p<0.05 LSD). Vertical bars: standard error of the 439 

mean. 440 

 441 

Fig. 4 - Net Photosynthesis (A, µmoles CO2 m-2 s-1) and Stomatal Conductance (gs, mmoles H2O m-2 442 

s-1) of three Populus deltoides clones: Alton, 149-82 and ST67. The treatments were control (well-443 

drained, black circles), flooded (white circles) and plants flooded after the end of the stress treatment 444 

(grey circles). r: Pearson correlation coefficient. The asterisk indicates statistically significant 445 

differences (p<0.05).  446 

 447 
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Supplementary

 

Figure 1
A -

 

Cuttings

 

of

 

the

 

clones used, showing

 

that

 

Alton

 

(a) and

 

ST67 (b) developed

 

hyperthrophied

 

lenticels

 

(HL) and

 

adventitious

 

roots

 

(AL), while

 

149-82 (c) did

 

not. 

ALT C ALT F ST67 C ST67 
F

(c)

HL

AR

(b)(a)

HL

AR

B -

 

The

 

adventitious

 

roots

 

had

 

aerenchyma (marked

 

with

 

an

 

arrow) that

 

developed

 

only

 

in flooded

 

plants. 
Lenght

 

of

 

the

 

bar: 100 m. C: Control. F: Flooded.
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