2 research outputs found

    The expression of the truncated isoform of somatostatin receptor subtype 5 associates with aggressiveness in medullary thyroid carcinoma cells

    No full text
    Abstract The truncated somatostatin receptor variant sst5TMD4 associates with increased invasiveness and aggressiveness in breast cancer. We previously found that sst5 activation may counteract sst2 selective agonist effects in a medullary thyroid carcinoma (MTC) cell line, the TT cells, and that sst5TMD4 is overexpressed in poorly differentiated thyroid cancers. The purpose of this study is to evaluate sst5TMD4 expression in a series of human MTC and to explore the functional role of sst5TMD4 in TT cells. We evaluated sst5TMD4 and sst5 expression in 36 MTC samples. Moreover, we investigated the role of sst5TMD4 in TT cells evaluating cell number, DNA synthesis, free cytosolic calcium concentration ([Ca(2+)]i), calcitonin and vascular endothelial growth factor levels, cell morphology, protein expression, and invasion. We found that in MTC the balance between sst5TMD4 and sst5 expression influences disease stage. sst5TMD4 overexpression in TT cells confers a greater growth capacity, blocks sst2 agonist-induced antiproliferative effects, modifies the cell phenotype, decreases E-cadherin and phosphorylated \u3b2-catenin levels, increases vimentin, total \u3b2-catenin and phosphorylated GSK3B levels (in keeping with the development of epithelial to mesenchymal transition), and confers a greater invasion capacity. This is the first evidence indicating that sst5TMD4 is expressed in human MTC cells, where it associates with more aggressive behavior, suggesting that sst5TMD4 might play a functionally relevant role

    Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug

    Get PDF
    Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. Methods: SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. Results: SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, \u394133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. Conclusion: SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer
    corecore