38 research outputs found

    Naturally Occurring PCSK9 Inhibitors

    Get PDF
    Genetic, epidemiological and pharmacological data have led to the conclusion that antagonizing or inhibiting Proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces cardiovascular events. This clinical outcome is mainly related to the pivotal role of PCSK9 in controlling low-density lipoprotein (LDL) cholesterol levels. The absence of oral and affordable anti-PCSK9 medications has limited the beneficial effects of this new therapeutic option. A possible breakthrough in this field may come from the discovery of new naturally occurring PCSK9 inhibitors as a starting point for the development of oral, small molecules, to be used in combination with statins in order to increase the percentage of patients reaching their LDL-cholesterol target levels. In the present review, we have summarized the current knowledge on natural compounds or extracts that have shown an inhibitory effect on PCSK9, either in experimental or clinical settings. When available, the pharmacodynamic and pharmacokinetic profiles of the listed compounds are described

    Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: new therapeutic approaches for the treatment of atherogenic dyslipidemia

    Get PDF
    Among the determinants of atherosclerotic cardiovascular disease (ASCVD), genetic and experimental evidence has provided data on a major role of angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4) in regulating the activity of lipoprotein lipase (LPL), antagonizing the hydrolysis of triglycerides (TG). Indeed, beyond low-density lipoprotein cholesterol (LDL-C), ASCVD risk is also dependent on a cluster of metabolic abnormalities characterized by elevated fasting and post-prandial levels of TG-rich lipoproteins and their remnants. In a head-to-head comparison between murine models for ANGPTL3 and ANGPTL4, the former was found to be a better pharmacological target for the treatment of hypertriglyceridemia. In humans, loss-of-function mutations of ANGPTL3 are associated with a marked reduction of plasma levels of VLDL, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Carriers of loss-of-function mutations of ANGPTL4 show instead lower TG-rich lipoproteins and a modest but significant increase of HDL. The relevance of ANGPTL3 and ANGPTL4 as new therapeutic targets is proven by the development of monoclonal antibodies or antisense oligonucleotides. Studies in animal models, including non-human primates, have demonstrated that short-term treatment with monoclonal antibodies against ANGPTL3 and ANGPTL4 induces activation of LPL and a marked reduction of plasma TG-rich-lipoproteins, apparently without any major side effects. Inhibition of both targets also partially reduces LDL-C, independent of the LDL receptor. Similar evidence has been observed with the antisense oligonucleotide ANGPTL3-LRX. The genetic studies have paved the way for the development of new ANGPTL3 and 4 antagonists for the treatment of atherogenic dyslipidemias. Conclusive data of phase 2 and 3 clinical trials are still needed in order to define their safety and efficacy profile

    Tuning the cytotoxicity of ruthenium(ii) para-cymene complexes by mono-substitution at a triphenylphosphine/phenoxydiphenylphosphine ligand

    Get PDF
    The new complexes [RuCl2(η6-p-cymene)(κP-Ph2PR)] [R = 4-C6H4OSiMe2tBu, 1; R = 4-C6H4Br, 2; R = OC(O)CHCl2, 3; R = OPh, 4; R = O(2-C6H4SiMe2tBu), 5] and [Ru(C2O4)(η6-p-cymene)κP-Ph2PO(2-C6H4(SiMe2tBu))], 6, were obtained in 83-98% yield from Ru(ii) arene precursors by three different synthetic strategies. The unprecedented phosphine Ph2P(O(2-C6H4SiMe2tBu)) was synthesized in 86% yield from 2-C6H4Br(OSiMe2tBu) and Ph2PCl, via intramolecular oxygen to carbon 1,3 migration of the silyl group (retro-Brook rearrangement). All the complexes were fully characterized by analytical and spectroscopic methods, and by single crystal X-ray diffraction in the cases of 3, 4, 5 and 6. Complexes 1-6 and the model compounds [RuCl2(η6-p-cymene)(κP-PPh3)] (Ru-PPh3) and [Ru(C2O4)(η6-p-cymene)(κP-PPh3)] (Ru-PPh3-O) underwent slow degradation in chloroform solutions upon air contact; the mixed valence complex [(η6-p-cymene)Ru(μ-Cl)3RuCl2(κP-PPh3)], 7, was isolated from a solution of Ru-PPh3in CHCl3, and X-ray identified. The antiproliferative activity of 1-6 and Ru-PPh3, Ru-PPh3-O and [RuCl2(η6-p-cymene)(κP-PTA)] (RAPTA-C) was assessed towards the triple-negative breast cancer cell line MDA-MB-231, the ovarian carcinoma cell line A2780 and human skin fibroblasts (HSF). Complexes 1, 2, 5 and 6 displayed IC50values significantly lower than that of cisplatin, with 2 providing a more potent cytotoxic effect on MDA-MB-231 and A2780 cancer cells compared to the noncancerous cell line (HSF). The stability of all complexes in DMSO/water solution was elucidated by NMR and conductivity measurements, and in particular35Cl NMR spectroscopy was helpful to check the possible chloride dissociation. The stability studies suggest that the cytotoxic activity in vitro of the compounds is mainly ascribable to Ru(ii) species still bound to the phosphorus ligand

    PCSK9 induces a pro-inflammatory response in macrophages

    Get PDF
    Intraplaque release of inflammatory cytokines from macrophages is implicated in atherogenesis by inducing the proliferation and migration of media smooth muscle cells (SMCs). PCSK9 is present and released by SMCs within the atherosclerotic plaque but its function is still unknown. In the present study, we tested the hypothesis that PCSK9 could elicit a pro-inflammatory effect on macrophages. THP-1-derived macrophages and human primary macrophages were exposed to different concentrations (0.250\u2009\uf7\u20092.5\u2009\ub5g/ml) of human recombinant PCSK9 (hPCSK9). After 24\u2009h incubation with 2.5\u2009\ub5g/ml PCSK9, a significant induction of IL-1\u3b2, IL-6, TNF-\u3b1, CXCL2, and MCP1 mRNA, were observed in both cell types. Co-culture of THP-1 macrophages with HepG2 overexpressing hPCSK9 also showed the induction of TNF-\u3b1 (2.4\u2009\ub1\u20090.5 fold) and IL-1\u3b2 (8.6\u2009\ub1\u20091.8 fold) mRNA in macrophages. The effect of hPCSK9 on TNF-\u3b1 mRNA in murine LDLR-/- bone marrow macrophages (BMM) was significantly impaired as compared to wild-type BMM (4.3\u2009\ub1\u20091.6 fold vs 31.1\u2009\ub1\u20096.1 fold for LDLR-/- and LDLR+/+, respectively). Finally, a positive correlation between PCSK9 and TNF-\u3b1 plasma levels of healthy adult subjects (males 533, females 537) was observed (B\u2009=\u20098.73, 95%CI 7.54\u2009\uf7\u20099.93, p\u2009<\u20090.001). Taken together, the present study provides evidence of a pro-inflammatory action of PCSK9 on macrophages, mainly dependent by the LDLR

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-γ released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Angiopoietin-Like 3 (ANGPTL3) and Atherosclerosis: Lipid and Non-Lipid Related Effects

    Get PDF
    Genetic and clinical studies have demonstrated that loss-of-function variants in the angiopoietin-like 3 (ANGPTL3) gene are associated with decreased plasma levels of triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), which leads to a significant reduction in cardiovascular risk. For this reason, ANGPTL3 is considered an important new pharmacological target for the treatment of cardiovascular diseases (CVDs) together with more conventional lipid lowering therapies, such as statins and anti proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies. Experimental evidence demonstrates that anti-ANGPTL3 therapies have an important anti-atherosclerotic effect. Results from phase I clinical trials with a monoclonal anti-ANGPTL3 antibody (evinacumab) and anti-sense oligonucleotide (ASO) clearly show a significant lipid lowering effect. In addition, from the analysis of the protein structure of ANGPTL3, it has been hypothesized that, beyond its inhibitory activity on lipoprotein and endothelial lipases, this molecule may have a pro-inflammatory, pro-angiogenic effect and a negative effect on cholesterol efflux, implying additional pro-atherosclerotic properties. In the future, data from phase II clinical trials and additional experimental evidence will help to define the efficacy and the additional anti-atherosclerotic properties of anti-ANGPTL3 therapies beyond the already available lipid lowering therapies

    Investigating the in vitro mode of action of okra (Abelmoschus esculentus) as hypocholesterolemic, anti-inflammatory, and antioxidant food

    No full text
    Okra (Abelmoschus esculentus) have been introduced as food relatively recently in Europe. It is native to India and one of the most important vegetables in Nigeria. The leaves can be consumed but also the fruit is rich in nutrients and bioactive compounds (i.e., dietary fiber, vitamins, oils, polysaccharides, polyphenols) and several health promoting actions have been ascribed, including a lipid-lowering properties. In this work the effects of fruit and leaf extracts on expression of key mediators of cholesterol metabolism, i.e., the low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), were investigated in human hepatoma cell line Huh7. Furthermore, effects on proinflammatory cytokines (IL-1β, IL-6 and TNF-α) expressed by THP1-derived macrophages were studied to assess potential anti-inflammatory actions. Okra fruit extract significantly induced the mRNA and protein levels of the LDLR by 1.4 ± 0.3 and 4.8 ± 1.5-fold, respectively without any significant modification of PCSK9 expression. In addition, fruit extract showed a significant sequestering ability of cholic acid. Leaf butanol extract exerted similar action by inducing the expression of both the LDLR (+3.1 ± 1.6-fold vs control) and PCSK9 (+1.3 ± 0.4-fold vs control). The evaluation of the potential anti-inflammatory effect revealed a significant action of leaf butanol extract with reduced mRNA levels of IL-1β (-28 ± 8 % vs control), IL-6 (-11 ± 1 % vs control) and TNF-α (-43 ± 8 % vs control), while fruit extract did not show any anti-inflammatory activity. Finally, leaf ethyl acetate extract showed a significant antioxidant capacity comparable to ascorbic acid. Taken together, we provided evidence that leaf butanol extract and, more effectively, fruit extract induced the LDLR expression, effect that may explain the previously reported hypocholesterolemic action of okra. In addition, okra's extracts reduced the expression of pro-inflammatory cytokines from THP1-derived macrophages, an effect that may suggest a vascular protective action of okra
    corecore