21 research outputs found

    Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Get PDF
    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions

    Low testosterone levels and high estradiol to testosterone ratio are associated with hyperinflammatory state and mortality in hospitalized men with COVID-19

    Get PDF
    Evidence supports a sex disparity in clinical outcomes of COVID-19 patients, with men exhibiting higher mortality rates compared to women. We aimed to test the correlation between serum levels of sex hormones [total testosterone, estradiol (E2), estradiol to testosterone (E2/T) ratio, progesterone), prolactin and 25-hydroxyvitamin D [25(OH)D] and markers of inflammation, coagulation and sepsis at admission in hospitalized men with COVID-19

    The Biomolecule Sequencer Project: Nanopore Sequencing as a Dual-Use Tool for Crew Health and Astrobiology Investigations

    Get PDF
    Human missions to Mars will fundamentally transform how the planet is explored, enabling new scientific discoveries through more sophisticated sample acquisition and processing than can currently be implemented in robotic exploration. The presence of humans also poses new challenges, including ensuring astronaut safety and health and monitoring contamination. Because the capability to transfer materials to Earth will be extremely limited, there is a strong need for in situ diagnostic capabilities. Nucleotide sequencing is a particularly powerful tool because it can be used to: (1) mitigate microbial risks to crew by allowing identification of microbes in water, in air, and on surfaces; (2) identify optimal treatment strategies for infections that arise in crew members; and (3) track how crew members, microbes, and mission-relevant organisms (e.g., farmed plants) respond to conditions on Mars through transcriptomic and genomic changes. Sequencing would also offer benefits for science investigations occurring on the surface of Mars by permitting identification of Earth-derived contamination in samples. If Mars contains indigenous life, and that life is based on nucleic acids or other closely related molecules, sequencing would serve as a critical tool for the characterization of those molecules. Therefore, spaceflight-compatible nucleic acid sequencing would be an important capability for both crew health and astrobiology exploration. Advances in sequencing technology on Earth have been driven largely by needs for higher throughput and read accuracy. Although some reduction in size has been achieved, nearly all commercially available sequencers are not compatible with spaceflight due to size, power, and operational requirements. Exceptions are nanopore-based sequencers that measure changes in current caused by DNA passing through pores; these devices are inherently much smaller and require significantly less power than sequencers using other detection methods. Consequently, nanopore-based sequencers could be made flight-ready with only minimal modifications

    Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    Get PDF
    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration

    Proteomic analysis of protein adsorption capacity of different haemodialysis membranes

    No full text
    Protein-adsorptive properties are a key feature of membranes used for haemodialysis treatment. Protein adsorption is vital to the biocompatibility of a membrane material and influences membrane's performance. The object of the present study is to investigate membrane biocompatibility by correlating the adsorbed proteome repertoire with chemical feature of the membrane surfaces. Dialyzers composed of either cellulose triacetate (Sureflux 50 L, effective surface area 0.5 m(2); Nipro Corporation, Japan) or the polysulfone-based helixone (FX40, effective surface area 0.4 m(2); Fresenius Medical Care AG, Germany) materials were employed to develop an ex vivo apparatus to study protein adsorption. Adsorbed proteins were eluted by a strong chaotropic buffer condition and investigated by a proteomic approach. The profiling strategy was based on 2D-electrophoresis separation of desorbed protein coupled to MALDI-TOF/TOF analysis. The total protein adsorption was not significantly different between the two materials. An average of 179 protein spots was visualised for helixone membranes while a map of retained proteins of cellulose triacetate membranes was made up of 239 protein spots. The cellulose triacetate material showed a higher binding capacity for albumin and apolipoprotein. In fact, a number of different protein spots belonging to the gene transcript of albumin were visible in the cellulose triacetate map. In contrast, helixone bound only a small proportion of albumin, while proved to be particularly active in retaining protein associated with the coagulation cascade, such as the fibrinogen isoforms. Our data indicate that proteomic techniques are a useful approach for the investigation of proteins surface-adsorbed onto haemodialysis membranes, and may provide a molecular base for the interpretation of the efficacy and safety of anticoagulation treatment during renal replacement therapy

    The Biomolecule Sequencer Project: Nanopore Sequencing as a Dual-Use Technology for Crew Health and Astrobiology Investigations

    Get PDF
    Human missions to Mars will fundamentally transform how the planet is explored, enabling new scientific discoveries through more sophisticated sample acquisition and processing than can currently be implemented in robotic exploration. The presence of humans also poses new challenges, including ensuring astronaut safety and health and monitoring contamination. Because the capability to transfer materials to Earth will be extremely limited, there is a strong need for in situ diagnostic capabilities. Nucleotide sequencing is a particularly powerful tool because it can be used to: (1) mitigate microbial risks to crew by allowing identification of microbes in water, in air, and on surfaces; (2) identify optimal treatment strategies for infections that arise in crew members; and (3) track how crew members, microbes, and mission-relevant organisms (e.g., farmed plants) respond to conditions on Mars through transcriptomic and genomic changes. Sequencing would also offer benefits for science investigations occurring on the surface of Mars by permitting identification of Earth-derived contamination in samples. If Mars contains indigenous life, and that life is based on nucleic acids or other closely related molecules, sequencing would serve as a critical tool for the characterization of those molecules. Therefore, spaceflight-compatible nucleic acid sequencing would be an important capability for both crew health and astrobiology exploration. Advances in sequencing technology on Earth have been driven largely by needs for higher throughput and read accuracy. Although some reduction in size has been achieved, nearly all commercially available sequencers are not compatible with spaceflight due to size, power, and operational requirements. Exceptions are nanopore-based sequencers that measure changes in current caused by DNA passing through pores; these devices are inherently much smaller and require significantly less power than sequencers using other detection methods. Consequently, nanopore-based sequencers could be made flight-ready with only minimal modifications

    Proteomic investigations on the effect of different membrane materials on blood protein adsorption during haemodialysis

    No full text
    During haemodialysis procedure, the contact of blood with the membrane material contained in the hemodialyser results in protein deposition and adsorption, and surface-adsorbed proteins may trigger a variety of biological pathways with potential pathophysiologic consequences. The present work was undertaken to examine for protein adsorption capacity of two membranes used for clinical haemodialysis, namely cellulose triacetate (a derivatized cellulosic membrane) and the synthetic polymer polysulfone-based helixone

    11β-Hydroxysteroid Dehydrogenase Type 1 Gene Knockout Attenuates Atherosclerosis and In Vivo Foam Cell Formation in Hyperlipidemic apoE<sup>−/−</sup> Mice

    Get PDF
    <div><h3>Background</h3><p>Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11βHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated.</p> <h3>Methodology/Principal Findings</h3><p>To examine the role of 11βHSD1 in atherogenesis, 11βHSD1 knockout mice were created on the pro-atherogenic apoE<sup>−/−</sup> background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice vs. 11βHSD1<sup>+/+</sup>/apoE<sup>−/−</sup> mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice. Bone marrow transplantation from 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice into apoE<sup>−/−</sup> recipients reduced plaque area 39–46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11βHSD1<sup>+/+</sup>/apoE<sup>−/−</sup> and 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup> mice including TLR 1, 3 and 4. Cytokine release from 11βHSD1<sup>−/−</sup>/apoE<sup>−/−</sup>-derived peritoneal foam cells was attenuated following challenge with oxidized LDL.</p> <h3>Conclusions</h3><p>These findings suggest that 11βHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11βHSD1 in modulating binding of pro-atherogenic TLR ligands.</p> </div
    corecore