5 research outputs found

    Nanosensors Based on a Single ZnO:Eu Nanowire for Hydrogen Gas Sensing

    Get PDF
    Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism. Surprisingly, by using only 10 μM Eu ions during deposition, the value of the gas response increased by a factor of nearly 130 compared to an undoped ZnO nanowire and we found an H2gas response of ∼7860 for a single ZnO:Eu nanowire device. Further, the synthesized nanowire sensors were tested with ultraviolet (UV) light and a range of test gases, showing a UV responsiveness of ∼12.8 and a good selectivity to 100 ppm H2gas. A dual-mode nanosensor is shown to detect UV/H2gas simultaneously for selective detection of H2during UV irradiation and its effect on the sensing mechanism. The nanowire sensing approach here demonstrates the feasibility of using such small devices to detect hydrogen leaks in harsh, small-scale environments, for example, stacked battery packs in mobile applications. In addition, the results obtained are supported through density functional theory-based simulations, which highlight the importance of rare earth nanoparticles on the oxide surface for improved sensitivity and selectivity of gas sensors, even at room temperature, thereby allowing, for instance, lower power consumption and denser deployment

    Nanosensors Based on a Single ZnO:Eu Nanowire for Hydrogen Gas Sensing

    No full text
    Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism. Surprisingly, by using only 10 μM Eu ions during deposition, the value of the gas response increased by a factor of nearly 130 compared to an undoped ZnO nanowire and we found an H2gas response of ∼7860 for a single ZnO:Eu nanowire device. Further, the synthesized nanowire sensors were tested with ultraviolet (UV) light and a range of test gases, showing a UV responsiveness of ∼12.8 and a good selectivity to 100 ppm H2gas. A dual-mode nanosensor is shown to detect UV/H2gas simultaneously for selective detection of H2during UV irradiation and its effect on the sensing mechanism. The nanowire sensing approach here demonstrates the feasibility of using such small devices to detect hydrogen leaks in harsh, small-scale environments, for example, stacked battery packs in mobile applications. In addition, the results obtained are supported through density functional theory-based simulations, which highlight the importance of rare earth nanoparticles on the oxide surface for improved sensitivity and selectivity of gas sensors, even at room temperature, thereby allowing, for instance, lower power consumption and denser deployment

    Nanosensors Based on a Single ZnO:Eu Nanowire for Hydrogen Gas Sensing

    Get PDF
    Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism. Surprisingly, by using only 10 μM Eu ions during deposition, the value of the gas response increased by a factor of nearly 130 compared to an undoped ZnO nanowire and we found an H2 gas response of ∼7860 for a single ZnO:Eu nanowire device. Further, the synthesized nanowire sensors were tested with ultraviolet (UV) light and a range of test gases, showing a UV responsiveness of ∼12.8 and a good selectivity to 100 ppm H2 gas. A dual-mode nanosensor is shown to detect UV/H2 gas simultaneously for selective detection of H2 during UV irradiation and its effect on the sensing mechanism. The nanowire sensing approach here demonstrates the feasibility of using such small devices to detect hydrogen leaks in harsh, small-scale environments, for example, stacked battery packs in mobile applications. In addition, the results obtained are supported through density functional theory-based simulations, which highlight the importance of rare earth nanoparticles on the oxide surface for improved sensitivity and selectivity of gas sensors, even at room temperature, thereby allowing, for instance, lower power consumption and denser deployment

    THIN FILMS OF COPPER OXIDE NANOSTRUCTURED VIA RAPID THERMAL PROCESSING

    No full text
    Nanostructured copper oxide films were obtained by the method of chemical synthesis from solutions (SCS) and exposed to post-growth rapid thermal processing (RTP) in air at different temperatures to study the influence of annealing temperature on morphological, chemical, structural and sensing properties. Controlled modification of surface morphology, in the particular size of nanostructures, crystallinity and phase can be achieved by RTP, which is preferred due to saving of energy budget nowadays. Detailed physico-chemical analysis of the films was performed using the scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman and energy dispersive X-ray (EDX) techniques. Sensors based on the copper oxide nanostructured films after RTP for 30 s only were tested with 100 ppm hydrogen gas at an operating temperature range from 250 ºC to 350 ºC. The difference in the response to 100 ppm hydrogen gas of the sensors based on thermally processed films at different temperatures was determined. We also noted that the change in the response of the sensing structure is correlated with its surface morphology controlled by RTP regime with a short duration. A detection mechanism to hydrogen gas has been proposed as well

    Journal of Law and Administrative Sciences No. 3/2015

    No full text
    corecore