272 research outputs found

    How the First Year of the COVID-19 Pandemic Impacted Patients’ Hospital Admission and Care in the Vascular Surgery Divisions of the Southern Regions of the Italian Peninsula

    Get PDF
    Background: To investigate the effects of the COVID-19 lockdowns on the vasculopathic population. Methods: The Divisions of Vascular Surgery of the southern Italian peninsula joined this multicenter retrospective study. Each received a 13-point questionnaire investigating the hospitalization rate of vascular patients in the first 11 months of the COVID-19 pandemic and in the preceding 11 months. Results: 27 out of 29 Centers were enrolled. April-December 2020 (7092 patients) vs. 2019 (9161 patients): post-EVAR surveillance, hospitalization for Rutherford category 3 peripheral arterial disease, and asymptomatic carotid stenosis revascularization significantly decreased (1484 (16.2%) vs. 1014 (14.3%), p = 0.0009; 1401 (15.29%) vs. 959 (13.52%), p = 0.0006; and 1558 (17.01%) vs. 934 (13.17%), p < 0.0001, respectively), while admissions for revascularization or major amputations for chronic limb-threatening ischemia and urgent revascularization for symptomatic carotid stenosis significantly increased (1204 (16.98%) vs. 1245 (13.59%), p < 0.0001; 355 (5.01%) vs. 358 (3.91%), p = 0.0007; and 153 (2.16%) vs. 140 (1.53%), p = 0.0009, respectively). Conclusions: The suspension of elective procedures during the COVID-19 pandemic caused a significant reduction in post-EVAR surveillance, and in the hospitalization of asymptomatic carotid stenosis revascularization and Rutherford 3 peripheral arterial disease. Consequentially, we observed a significant increase in admissions for urgent revascularization for symptomatic carotid stenosis, as well as for revascularization or major amputations for chronic limb-threatening ischemia

    Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results From Patient Treatment Performed at CNAO

    Get PDF
    Particle therapy in which deep seated tumours are treated using 12C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The 12C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using 12C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed

    Technical Report: Leonardo’s Chronicles

    No full text
    The purpose of this document is to outline and to show how one person can go from writing, developing and publishing his/her own mobile RPG on any Android platform. There are several tools out there that developers need to be fully aware of when choosing which path to go on. From the ground up approach of Android studio, to the tested Unreal Engine or, as I did, new iterations of existing engines: RPG Maker MV. In my case, I have decided to experiment with a brand new iteration of the RPG Maker environment with the goal of leveraging the innate portability capabilities of the tool. However, this did not come without its challenges as with new tools, one needs to be aware that the amount of resources available will be limited compared to more mainstream approaches. For this reason, I went for a cautious agile development approach that allowed me to work on short sprints where I was able to gain user feedback at the end of each iteration. What I have kept in mind throughout the development is to stay true to the top RPG’s such as the successful Square Enix’s: Final Fantasy franchise1 and SEGA’s Defenders of Oasis2. The end goal, as mentioned above, is to produce an immersive user experience that will be available to gamers around the world via Google’s Play store at zero costs and completely uninterrupted by advertisements or in-app purchases: “an old-school role playing game”

    Structural and thermodynamic study of Ca A- or Co B-site substituted SrFeO3−δ perovskites for low temperature chemical looping applications

    No full text
    Perovskite-structured materials, owing to their chemical–physical properties and tuneable composition, have extended their range of applications to chemical looping processes, in which lattice oxygen provides the oxygen needed for chemical reactions omitting the use of co-fed gaseous oxidants. To optimise their oxygen donating behaviour to the specific application a fundamental understanding of the reduction/oxidation characteristics of perovskite structured oxides and their manipulation through the introduction of dopants is key. In this study, we investigate the structural and oxygen desorption/sorption properties of Sr1−xCaxFeO3−δ and SrFe1−xCoxO3−δ (0 ≤ x ≤ 1) to guide the design of more effective oxygen carriers for chemical looping applications at low temperatures (i.e. 400–600 °C). Ca A- or Co B-site substituted SrFeO3−δ show an increased reducibility, resulting in a higher oxygen capacity at T ≤ 600 °C when compared to the unsubstituted sample. The quantitative assessment of the thermodynamic properties (partial molar enthalpy and entropy of vacancy formation) confirms a reduced enthalpy of vacancy formation upon substitution in this temperature range (i.e. 400–600 °C). Among the examined samples, Sr0.8Ca0.2FeO3−δ exhibited the highest oxygen storage capacity (2.15 wt%) at 500 °C, complemented by excellent redox and structural stability over 100 cycles. The thermodynamic assessment, supported by in situ XRD measurements, revealed that the oxygen release occurs with a phase transition perovskite-brownmillerite below 770 °C, while the perovskite structure remains stable above 770 °C.ISSN:1463-9084ISSN:1463-907

    Chemical looping oxidative dehydrogenation of ethane: Elucidating the role of alkali metal salt promoters to suppress overoxidation

    No full text
    The molecular O2 feed in the oxidative dehydrogenation (ODH) of ethane is replaced by oxygen storage materials that release in situ gaseous O2 in a chemical looping scheme, without compromising the selectivity towards the desired product when suitable alkali metal salt coatings are applied

    Highly Selective Oxidative Dehydrogenation of Ethane to Ethylene via Chemical Looping with Oxygen Uncoupling through Structural Engineering of the Oxygen Carrier

    No full text
    The oxidative dehydrogenation of ethane (ODH) to produce ethylene offers advantages compared to the industry standard steam cracking, but its industrial application is hindered by costly air separation units needed to supply oxygen. A chemical-looping-based oxidative dehydrogenation (CL-ODH) scheme is presented, in which oxygen carriers supply gaseous oxygen in situ, which then reacts with ethane in the presence of a catalyst at a comparatively low temperature (500 °C). A common challenge of chemical looping processes beyond combustion is to suppress the overoxidation of hydrocarbons to COx to enable high product yields. It is demonstrated that the overoxidation of ethane can be eliminated completely through structural engineering of the perovskite oxygen carrier involving alkali-metal-based carbonate coatings, while maintaining the materials’ ability to generate oxygen. Through CL-ODH, higher ethylene selectivity (≈91%) and yields (≈39%) are achieved compared to the conventional ODH scheme without oxygen carrier and cofeeding air/ethane. 18O-labeling experiments demonstrate that the carbonate layer functions like a diffusion barrier for ethane while being permeable for oxygen. Both the CL-ODH scheme and the material design strategy can be extended to other catalytic oxidation or dehydrogenation reactions requiring oxygen at different temperatures, offering enormous potential to intensify such processes

    Liberomyces pistaciae sp. nov., the causal agent of pistachio cankers and decline in Italy

    Get PDF
    A new canker and decline disease of pistachio (Pistacia vera) is described from Sicily (Italy). Observations of the disease and sampling of the causal agent started in spring 2010, in the area where this crop is typically cultivated, Bronte and Adrano (Catania province) and later extended to the Agrigento and Caltanissetta provinces. Isolations from the margins of twig, branch and stem cankers of declining plants resulted in fungal colonies with the same morphology. Pathogenicity tests on 5-year-old potted plants of Pistacia vera grafted on P. terebinthus reproduced similar symptoms to those observed in nature and the pathogen was confirmed to be a coloniser of woody plant tissue. Comparison of our isolates with the type of the apparently similar Asteromella pistaciarum showed that our isolates are morphologically and ecologically different from A. pistaciarum, the latter being a typical member of Mycosphaerellaceae. Asteromella pistaciarum is lectotypified, described and illustrated and it is considered to represent a spermatial morph of Septoria pistaciarum. Multi-locus phylogenies based on two (ITS and LSU rDNA) and three (ITS, rpb2 and tub2) genomic loci revealed isolates of the canker pathogen to represent a new species of Liberomyces within the Delonicicolaceae (Xylariales), which is here described as Liberomyces pistaciae sp. nov. (Delonicicolaceae, Xylariales). The presence of this fungus in asymptomatic plants with apparently healthy woody tissues indicates that it also has a latent growth phase. This study improves the understanding of pistachio decline, but further studies are needed for planning effective disease management strategies and ensuring that the pathogen is not introduced into new areas with apparently healthy, but infected plants
    • …
    corecore